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Abstract  

The metric is a measure of the cost of understanding soft-

ware and can be evaluated at all levels of the code (from 

expression/statement through to library/application). A 

working prototype has been validated against manufactured 

examples for refactoring, design patterns and cohesion lev-

els. The suggestion is that the metric could be used as part 

of an approach to automate a large part of refactoring and 

software design. 

Categories and Subject Descriptors D.2.8 [Metrics]: 

Complexity measures.. 

General Terms Design, Human Factors, Theory. 

1. Introduction 

This paper introduces a metric of software design complexi-

ty that represents the cost of understanding unfamiliar code. 

The constituent parts of the metric are as follows (a greater 

value corresponds to a greater cost): 

1) Element cost: Each code element will become an ele-

ment in the memory network of the code reader and will 

incur the time costs of committing to long term memory. 

2) Cognitive overload penalty: A highly non-linear func-

tion that represents the burden of presenting too many 

items at once to the reader. 

3) Coupling and cohesion costs: To promote structures 

similar to the chunking exhibited in long term memory. 

4) Semantic penalty: Not covered directly in the metric 

this represents the transmitting of semantic knowledge 

about the purpose of the code (primarily by accurate 

names on the code elements). Section 9 discusses this in 

more detail. 

The metric is validated against manufactured examples 

for refactoring [6], design patterns [7] and cohesion levels 

[14]. I do not attempt any formal, mathematical validation 

as the complexity perceived by the mind may not necessarily 

prescribe to mathematical theory.  

The metric is applied to each element (expression, state-

ments, method, class etc.) and aggregated up to get a total 

measure for each method, class, package, application etc. 

A comparison is made with the force directed graph al-

gorithm (used to display graphs clearly). The next section 

describes the Crofton School problem, a common analogy 

amongst the structure of memory, software complexity and 

force directed graphs. 

2. Crofton School Problem 

Crofton primary school (taking children from aged 4 to 11) 

is one of the largest in the UK with six classes in each year 

(each class has approx. 25-30 children). In the first 4 years 

the children remain together in the same class. For the fifth 

year the classes are mixed up. Children are allowed to state 

who their closest friends are and the school will attempt to 

put them together in the same class. Although there is no 

limit to the number of friends they can specify, this is typi-

cally just one or two. In Figure 1, Michael has chosen Avi-

nash as his friend and Charles is the only one who has stated 

two children as his friends (Omene and Veronica) 

This is the background to the problem that is stated more 

formally in the next subsection. 

 
 Figure 1.  Crofton School Stated Friends Example. 



2.1 Statement of Problem 

Given a set of children and their stated friendships what is 

the optimum seating plan (at desks within classes) that min-

imises unhappiness. Unhappiness occurs from two sources: 

1) “I want to sit with my friend”. If a child has stated 

a friendship but is not seated close to that friend then 

they will be unhappy. The further away they are from 

their friend the greater the unhappiness. The value used 

for unhappiness is 3 if the child and their friend are in 

different classes, 2 if they are in the same class but dif-

ferent desks and 1 if they are seated at the same desk. 

2) “Who’s she?” Children are unhappy if they’re seat-

ed at the same desk as a child they have no common 

friendship with. The value will be the “degree of separa-

tion” between the two children. In the above example if 

Omene and Veronica are sat at the same desk then this 

will be 1, but if Belinda and Veronica are sat at the same 

desk this will be 2 (the shortest path length on the graph 

of friendships). This is also extended to the association 

between desks in the same class (again, the unhappiness 

value will be the shortest path length on the graph of 

friendships). 

Figure 2 shows the optimal seating plan for the example 

scenario from Figure 1 (there are only 203 unique solutions 

if we restrict the children to one class). The red lines (with-

out arrows) show where the “Who’s She?” unhappiness 

values exist and the black arrowed lines are the “Be with my 

friend” unhappiness values. In each case the number of lines 

is indicative of the value. 

In the optimum solution. all children are sat at the same 

desk as their friends (“Be with my friend” value is 1) with 

the exception of Belinda and Charles (“Be with my friend” 

value is 2 as they are on different desks in the same class). 

Also, the children within each desk are direct friends, with 

the exception of Belinda and Michael who’s friendship is via 

Avinash (which is why the “Who’s She?” value between 

Michael and Belinda is 2). 

Moving Belinda to the same table as Charles (Figure 3) 

would reduce the “Be with my friend” value between them 

from 2 to 1 but this would be offset by an increase of the 

“Be with My Friend” value between Belinda and Avinash. 

The additional “Who’s She?” unhappiness between Belinda 

and the rest of the Desk A is more than the removal of the 

“Who’s She?” unhappiness between Belinda and the rest of 

 
Figure 2.  Optimum Seating Plan. 

 
Figure 3.  Non-Optimal Seating Plan. 



Desk B. 

This puzzle was developed as an analogy to illustrate the 

similarity between coupling /cohesion, the structure of long 

term memory and the force directed graph algorithm (Figure 

5) and the mapping is discussed more in the sections below. 

Software metrics are used to produce code that is easy to 

understand and the force directed graph algorithm is used to 

aid clarity in visualising graphs. It is not mere coincidence 

that a common analogy exists between the cognitive model 

and these two. 

2.2 Coupling and Cohesion 

In software, the children of the Crofton school problem are 

code statements and the stated friendships are the depend-

encies between statements. The “Who’s She?” unhappiness 

penalty relates [reciprocally] to cohesion (a large value of 

“Who’s She?” corresponds to a low Cohesion and a small 

value to high cohesion). The “Be with My Friend” unhappi-

ness penalty relates to coupling, the greater the value the 

more the coupling. The desks are the code structures we 

use to group statements (e.g. methods, classes, package 

etc.) 

By minimising the combined value of “Who’s She?” and 

“Be with My Friend” we are finding code structures that 

reduce coupling and improve cohesion. 

2.3 Long term Memory structures 

Memory Elements are stored as chunks in the long term 

memory network (a chunk is “a collection of memory ele-

ments having strong associations with one another but weak 

associations with elements within other chunks” [10]). The 

children in the Crofton School puzzle are representative of 

memory elements, and the friendships are the association 

amongst memory elements. The desks/classes are the 

chunks of memory elements. Minimising the “Who’s She?” 

penalty will improve the associations amongst elements 

within a chunk and minimising “Be with my friend” will 

promote only weak associations of elements in other 

chunks. 

2.4 Force Directed Graphs 

Many drawing applications use a force directed algorithm to 

display connected items. The algorithm works by modelling 

a spring between connected elements and a weaker repelling 

force between all items. Both forces vary according to the 

distance between the elements but in different ways, the 

spring force gets larger for larger distances but the repelling 

force gets smaller for larger distances. The resultant force 

upon each element is calculated, which implies an accelera-

tion. The movement of the elements are allowed to follow 

the normal Newtonian model to find a structure that will 

result in a resting state (a damping on the velocities is used 

to prevent oscillations). The solution for the example sce-

nario is shown in Figure 4. 

The children of the Crofton School puzzle are the verti-

ces of the graph and the friendships are the edges. The 

 
Figure 4.  Crofton School mapping displayed using 

Force Directed Graph algorithm. 
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ciated with each other…. 
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“Be with my 

friend” 

Coupling (penalising the separation of asso-

ciated statements will reduce coupling) 
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chunks” 
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Figure 5.  Mapping between Crofton school problem and Software Metric, Cognition & Force Directed Graph. 



“Who’s She?” penalty is represented by the repelling force 

between all elements and the “Be With My Friend” is the 

spring force between connected vertices. The crucial differ-

ence for the force directed graph algorithm is that rather 

than have fixed desks/methods/chunks the (x,y) position of 

the element is the variable we optimise upon. For the other 

three cases (Crofton school problem, coupling/cohesion and 

long term memory) there is no information as to how to 

improve any individual solution. For example when we 

moved Belinda to the left hand desk, the only way of dis-

covering the variation was to calculate the unhappiness val-

ue before and after. However, to minimise the speed in the 

system, the force directed approach utilizes the first order 

derivatives (acceleration). This gives a direction to move in 

that will (at least most times) improve our solution (this is 

also identified by Feathers [4]). 

3. Metric Derivation 

The metric has been developed to illustrate the conjecture 

that “software code is a textual representation of the 

memory structure in the mind” [12]. The metric uses a mix-

ture of the cognitive psychologist's models and software 

design principles to produce a measure of complexity and is 

a prototype implementation of the four minus analogies rule 

[12]. 

3.1 Code Elements 

Code elements are expressions, statements, methods, clas-

ses, packages, libraries, modules, applications, suites of ap-

plications and so on. Code elements are presented to the 

reader as a structure graph, where statements are child ele-

ments of methods, methods are child elements of classes 

etc. The optimum design for the structure graph would be 

one capable of being used directly as the long term memory 

network within the reader’s mind. Each code element will 

incur a time cost to persist to long term memory. 

3.2 Cognitive Overload Penalty 

The capacity limits of short term memory restrict the num-

ber of elements that can be presented at any time [2]. This 

has an effect on the number of child elements that each node 

has in long term memory [3,11]. To model this in the metric 

each code element will carry a penalty based on the number 

of children it has on the structure graph (as the structure 

graph is representative of long term memory). There are a 

number of strategies for the new reader to identify candidate 

associations. Looking purely at pairs of elements would 

perform like n
2
, unordered combinations of all subsets (per-

forming like 2
n
) or ordered combinations of all subsets (per-

forming like n!). I have used n! for the prototype as this is 

more of the near barrier function identified by Taatgen (Fig-

ure 6, the reciprocal of the proportion correct is a measure 

of the complexity) 

The exception to this function is when varieties of analo-

gies are presented to the reader [12]. 

3.3 Coupling And Cohesion 

In addition to the structural graph there is a dependency 

graph. This is an extended call graph which contains de-

pendencies between expressions and statements as well as 

those amongst methods and classes. 

The child elements in the structure graph are representa-

tive of memory chunks. A chunk is defined [10] as a collec-

tion of memory elements that are closely related to each 

other and loosely related to elements in other chunks. Cohe-

sion metrics measure how closely related code elements 

within a chunk are and coupling metrics measure how much 

code elements are dependent on elements in other chunks. 

 
Figure 6: Illustration of the Short term memory capacity 

limit [2]. 

 

 
Figure 7. Illustrative Example of Structural and Depend-

ency Graphs. 



Programmers use spatial imagery for the abstract mental 

representation of code [5]. I propose to measure the cohe-

sion amongst code elements within a chunk as a distance 

measure on the dependency graph. Additionally to measure 

coupling between dependent elements as a distance measure 

on the structure graph. 

All connections (on both graphs) have a path length and 

can either be contributing or non-contributing. Cou-

pling/cohesion costs are only calculated for contributing 

links. For the structural graph the parent/child links are non-

contributing but contributing links exist amongst all siblings. 

The determination of the contributing links on the depend-

ency graph is less precise and driven by whether coupling 

needs to be calculated. For example, a method must have a 

dependency upon the return statements within the method. 

The requirement that the code reader understand the soft-

ware language means that this connection is already under-

stood. The metric described in this paper attempts to 

measure the cost of understanding new code and so it is not 

necessary to measure the cost of a dependency that is al-

ready understood. 

3.4 Illustration 

An example of the structural and dependency graph is 

shown in Figure 7. The Structural graph is coloured bold 

red and the dependency graph in black (with arrows). Con-

tributing links are solid lines and non-contributing links are 

dashed. For the purposes of simplicity the path lengths are 1 

for all links on the structural and dependency graphs. The 

numbers on the structural contribution links are the mini-

mum path lengths on the dependency graph (this is used to 

calculate coupling). The numbers on the dependency contri-

bution links are the minimum path lengths on the structural 

graph (used to calculate cohesion). 

4. Metric Formulae 

The metric uses two graphs based on code elements. Firstly 

a structural graph S which is based on how the code is pre-

sented to the reader (e.g. a statement is a group of expres-

sions, a method is a group of statements and fields etc.). 

Secondly, a dependency graph D which is an extended call 

graph that contains the dependencies between statements as 

well as methods. 

For each code element i, the individual complexity metric 

value is defined in (1). Note: the full version would include 

semantic contributions. 

(1) 

These values can be aggregated up through the structural 

graph (2) to get an overall measure for the class, package, 

application, etc. 

(2) 

Where x can be CogCx, element, cognitive, cohesion or 

coupling and ci are the child elements of i on the structural 

graph S. 

The elementi cost is a simple static cost dependent upon 

the type of code element (e.g. 1 for a statement, 2 for a 

method and 5 for a class). 

Defining ai
DEP

 and ai
STRUCT

 as the set of elements at-

tached to element i by a contributing link on the dependency 

and structural graphs respectively. Also, pij
DEP

 and pij
STRUCT

 

as the shortest path length between elements i and j on the 

dependency and structural graphs respectively. Then cohe-

sion and coupling are specified as follows: 

(4) 

 

(5) 

The distance function applied here [x log(x)] was chosen 

to promote even spacing with the elements. For example, if 

two elements have an equal dependency on a third, then 

(ignoring other dependencies for the moment) the position-

ing of the third element on the structure graph should be 

equidistant from the both of its two dependencies. In some 

ways the choice of distance function here is similar to the 

choice of the functions used in the force-directed layout of 

graphs, where in some cases x and x
2
 functions have been 

used. Empirical research would be necessary to establish 

which function produces the best metric value. 

cognitivei = ni! 

(6) 

Where ni is the number of children element i has on the 

structural graph allowing for any number of varieties of 

analogies. For example a package that contains classes that 

all extend the same abstract class (and are therefore varieties 

of that analogy) has ni =1. Similarly the switch statement 

has ni =1 as its children (the case statements) are varieties of 

an analogy [12]. 

 

 

 

 



5. Results From Prototype 

The following sections give the values of the metric for 

manufactured examples. A proof of concept prototype 

(written as an eclipse plugin) was used to calculate the val-

ues. All code is available from the author’s website. 

5.1 Cohesion Level 

Sibling elements on the structural graph that have direct 

associations will have a low cohesion value within the met-

ric. In this way sequential cohesion [14] is rewarded.  

The example here (Figure 8) shows how the metric is 

consistent with the communicational level of cohesion. I am 

assuming that method1 is always called before method2, so 

moving the statement that calls methodB, as shown, doesn't 

modify the behaviour of the application. In the initial posi-

tion, the statement that calls methodB is a sibling of the 

other statements in method2 and so the cohesion metric is 

calculated between them. This results in a high value as 

methodB and the variables in the other statements of meth-

od2 are far apart on the dependency graph. When we move 

the methodB call, the cohesion metric is now calculated 

with the statement in method1. In our example, Tar-

get.methodA() and OtherTarget.methodB() are within 

the same package and are closer on the dependency graph 

due to the dependencies amongst that package. This results 

in an overall reduction in the cohesion metric. 

5.1 Refactoring 

5.1.1 Extract Method 

The extract method refactoring [6] example is in Figure 9. 

The biggest gain in splitting up the before method is with 

the cognitive penalty. Also of note is that cohesion is im-

proved at the expense of worse coupling and element costs. 

5.1.2 Inline Method 

For the inline method example (Figure 10), moving all the 

 
 Element Cognitive Cohesion Coupling Total 

Before 8 26 1381 174 1589 

After 9 10 5 176 200 

Figure 8 : Cohesion Level Example. 

 
Is Compared to 

 
 

 Element Cognitive Cohesion Coupling Total 

Before 10 11 1.92 37.60 60.52 

After 6 25 2.22 8.74 41.96 

 

Figure 10. Refactoring Inline Method. 

 
Is compared to : 

 
 

 Element Cognitive Cohesion Coupling Total 

Before 9 5041 9.56 11.15 5070.71 

After 12 15 2.94 33.45 63.39 

 

Figure 9 :Refactoring Extract Method. 



behaviour to one method doesn't break the short term 

memory capacity limit (the cognitive penalty function is a 

near barrier function). Consequently the improvement in 

coupling is more than enough to offset degradation of the 

cohesion cost and cognitive penalty. 

5.2 Design Patterns 

The design pattern tests centre around a fictitious require-

ment that a calling abstraction needs to call behaviour(s) on 

a target abstraction. The three versions differ based on the 

complexity of the caller and target behaviours and the de-

tailed relationships between caller and target. In the dia-

grams The pink boxes in Figures 11-13 represent the 

abstractions of the problem (with <<analogy>> stereotypes 

to represent abstractions and <<variety>> to represent an 

implementation of an abstraction). 

1) Simple (Figure 11): A simple, single target behav-

iour for a number of varieties and there is only one 

caller of this behaviour. 

2) Complex 1 to 1 (Figure 12): Complex set of target 

behaviours for a number of varieties. Each of the 

varieties has a one-to-one dependency with the va-

rieties of the calling abstraction. 

3) Complex independent (Figure 13): Complex set of 

behaviours for a number of varieties. Behaviours 

are called by various unrelated callers. 

 

These versions have been chosen so that the approaches 

below will be the preferred designs of behaviourA for each 

version in turn 

a) Switch: Simple method that utilises switch 

b) Hierarchy: target behaviours are incorporated into 

the varieties of the calling code, similar to the 

Template pattern. 

c) Strategy: Strategy pattern, behaviours are grouped 

independent of calling code. 

 

Table I shows that the metric values for the preferred de-

signs are the smallest for the three versions of requirements. 

 

Table I : Metric Values for Design Pattern Examples 

 Proposed Design 

 Switch Hierarchy Strategy 

Simple 107 171 421 

Complex 1 to 1 3386 1374 1513 

Complex Independent 10724 3640 1321 

 

 As the code author deliberates over candidate designs 

they will try and determine which choice will provide the 

minimum complexity (whilst still being consistent with re-

quirements, both implicit and explicit). The essential com-

plexity can be considered the choice with the global 

minimum complexity value. Note that this is not a measure 

of just algorithmic complexity; it rewards code structures 

that promote ease of understanding. Code simplicity is ar-

guably as valid a requirement as the algorithmic behaviour 

needed, since the majority of software development costs 

are in support and maintenance. Further, complexity is as 

much a function of human cognition as it is any objective 

measure of the algorithm. 

 
Figure 11. Simple Design Example. 

 

 
 

Figure 12. Complex 1to1 Design Example 



6. Extensibility 

To investigate extensibility we can measure each design 

choice for different numbers of varieties of the abstractions. 

In the example below I will compare the increase in com-

plexity between implementing one and five varieties of the 

target and caller abstractions. The difference between the 

two measures must be normalised both by the number of 

additional varieties and the complexity of implementing just 

one variety:  

(6) 

Where CogCxe
(1)

 is the value for the essential complexity 

solution for 1 variety, and CogCx
(n)

 is the value of the can-

didate solution with n varieties implemented. 

Table II shows the calculated extensibility factor for the 

design pattern examples (for each case I use an approximate 

to CogCxe
(1)

 by taking the minimum value of CogCx
(1)

 

amongst the three candidate solutions). In this example, the 

design choice with the lowest extensibility factor coincides 

with the lowest metric value. This may not always be true. 

A software designer may accept additional complexity when 

coding the first variety for the promise of improved overall 

complexity when all varieties are implemented at a later 

date. Accurate appreciation of the extensibility factor is a 

design skill. 

7. Comparison With Other Metrics 

The simplest measure of complexity is counting the lines of 

code, and is directly related to the element cost. This can be 

a successful measure for applications that are already well 

designed (could be used as a crude comparative estimate of 

maintenance and support costs amongst applications). 

The scope restrictions applied to method local variables 

means that coupling can't exist between statements in differ-

ent methods. Most coupling and cohesion metrics operate 

solely at the level of classes and/or methods as this is where 

a good deal of the coupling/cohesion is present. But as we 

have seen in the method refactoring example, coupling and 

cohesion at the statement level can influence the design. 

McCabe's cyclomatic complexity metric measures the 

number of possible paths in a method. This metric tries to 

warn against a large number of elements presented in a 

chunk (to keep within short term memory capacity limits). 

The cognitive penalty element of CogCx represents the 

complexity that McCabe measures. 

The examples in Section 5 show that we rarely improve 

all the parts of the metric (element cost, coupling, cohesion, 

cognitive). Rather, some parts improve and some worsen 

but the overall measure of complexity can be reduced. 

Software design can be considered an optimisation problem 

where the objective is to minimise complexity (presented to 

the code reader) whilst satisfying all the requirements. Re-

quirements can be explicit (e.g. VAT must be added to all 

invoices and it must be possible to change the rate) or im-

plicit (e.g. unwritten performance requirements such as the 

application must respond to queries in a reasonable time and 

run on a pc with the standard cpu and memory limitations). 

The candidate solutions are like islands to one another and 

so our optimisation is most like a constrained Integer pro-

gramming problem.  

Perhaps the most useful values in optimisation problems 

are the first and second order derivatives as these suggest 

which direction to move for the greatest benefit. However, 

these are unavailable to us in our software design optimisa-

tion problem. This may explain why metrics aren't used as 

much as we would wish they were. We can identify individ-

ual values that seem to be outside of usual variance but we 

are not guaranteed that tactics to reduce those individual 

outliers will lead to a reduction in the overall complexity.  

8. Metric Parameters 

Although not explicitly stated in the metric formulae, there 

is the capability to apply constants to all or part of the equa-

tions. These parameters could be empirically researched to 

 
Figure 13. Complex Idependent Design Example. 

 

Table II. : Extensibilty Measures For Design Pattern 

Examples 

 Switch Hierarchy Strategy 

Simple 0.23 0.39 0.77 

Complex 1 to 1 4.95 0.78 0.85 

Complex Independent 5.39 3.23 1.05 

 



allow the metric to match the minds perception of complexi-

ty. This would be influenced not only by the language but 

also whether tools are available to the developer. The ability 

to traverse straight to a method declaration via a single key 

press (e.g. F3 in eclipse) lessens the impact of our short 

term memory time limit when traversing links. Consequently 

we may allow the distance function on the structural graph 

to be reduced. 

9. Semantic 

Computer scientists refer to them as abstractions, cognitive 

psychologists as analogies and cognitive linguists as meta-

phors. They are the essence of intelligence, the building 

blocks of our cognitive abilities. In mapping the similarities 

between two or more objects and building up a structure, 

we lay down memories that allow us to use existing 

knowledge in new situations and can point to new under-

standing and breakthroughs. Mullen[12] showed the ubiqui-

ty of analogical code structures in code (not just as a 

class/interface construct). The description of an analogy is 

shown in Figure 14. The discussion in this section will also 

show that analogies are the common link between natural 

language and software (Figure 15 gives a précis of the map-

ping) . 

As an example consider the following well known nurse-

ry rhyme as a statement of a fictional set of requirements 

functional requirements.  

Mary had a little lamb. 

Its fleece was white as snow 

and everywhere that Mary went 

the lamb was sure to go. 

The complete analogical analysis of our requirements are 

discussed in the following sub-sections which will lead to 

the diagram in in Figure 16. 

9.1 Nouns 

Common nouns are analogies, proper nouns are varieties 

As a proper noun “Mary” is a variety of some analogy as 

yet unstated. We may use our experience to establish that 

Mary is a variety of the “girl” analogy or a variety of the 

“shepherdess” analogy. Which analogy is appropriate will be 

dependent upon the purpose that we are modelling Mary (in 

 
Figure 14.Analogy Structure. 

 
Figure 16. “Mary Had a Little Lamb” analogical diagram. 

Lexical Category  

Noun Proper Variety 

Common Analogy 

Verb  Behaviour 

Adjective/ 

Adverb 

Descriptive Variety 

Modifier Additional behaviours 

and/or attributes to ex-

isting analogy 

Figure 15. Mapping of word types to analogical struc-

ture elements. 



this example these are requirements that are yet to be stated 

or discovered). For the moment I will treat Mary as a sin-

gleton. 

As a common noun, “lamb” is an analogy, the attributes 

and behaviours for which will become apparent.. 

At this point it is worth mentioning some of the excep-

tions and pitfalls. Nouns (as with all words) can be subject 

to ambiguity due to: 

• homonyms, where the same sounding and/or writ-

ten word can have more than one unrelated meaning (e.g. 

bank can be a financial institution or the bank of a river) 

• polysemy, where the same sounding and/or written 

word has more than one related meaning. (e.g. something 

you can bank on is a certainty, and that has it's roots in what 

used to be perceived as the stability of banks)  

• metonymy, where a simple attribute of a complex 

concept is used to identify the whole. For example “The 

White House” refers to the office of the President of the 

United States (i.e. we should not model a house that is 

white). The name comes from a relatively minor attribute 

(the colour of the external walls of a former home now used 

as the office building) 

9.2 Adjectives 

Adjectives can either be descriptive or noun modifiers. 

Descriptive adjectives are varieties of analogies. When 

applied to a noun(analogy) this infers two things. Firstly that 

the lamb analogy has an attribute that the adjective is a vari-

ety of (the attribute is itself a noun/analogy). Secondly that 

the instance to which the adjective is applied to has the val-

ue of the adjective. 

In our example “little” is a variety of the “size” analogy. 

So the lamb analogy has a size attribute and the particular 

instance (which I will call “Mary's Lamb”) has “little” as it's 

variety/value of size. The choice of which attributes and/or 

behaviours we model for the lamb analogy is directly driven 

by the purpose that we need to view the lamb (for example 

our purpose does not require us to model the fact that the 

lamb has eyes or a mouth). We model attributes as specified 

by the requirements in the same way that our mind chooses 

analogies based on purpose. Similarly, size is an analogy and 

can have many attributed but as we don't need them to satis-

fy our requirements we model only the names of the analo-

gy/variety.  

Modifier adjectives are a way to append behaviours to 

an existing analogy 

As will be discussed in the next section, behaviours are 

verbs. Verbs can sometimes be used with both an object 

noun (the thing doing the action) and a subject noun (the 

thing upon which the action is done). For example. 

Dogs love bones 

Pratibha compares the scores. 

In these instances the nouns are already named, but if we 

needed to attach a name to them (to make the application of 

the behaviour/verb more abstract) what do we choose? To 

identify the object noun we nominise the verb usually by 

adding -or or -er to the verb root (e.g. the dog is the lover 

[of bones], Pratibha is the comparator). To identify the sub-

ject, we adjectivise the verb usually by adding -ible or -able 

to the verb root (scores are comparable, bones are lovea-

ble).  

When the software programmer attempts to model such 

behaviour, it is the dependencies that will drive whether it 

should be placed with the subject or the object (more specif-

ically the impact of the dependencies on the coupling and 

cohesion metric). For example, sometimes all the compare 

logic will exist in the comparator, in other cases our subject 

noun/analogy will need to have some of the compare logic, 

for which we will label it as a comparable element. Java 

interfaces are sometimes adjectives (Runnable, Comparable, 

etc.) and in these cases they almost certainly end in -able or 

-ible . These interfaces modify the existing analogy to im-

plement some or all of a behaviour. This is why these inter-

faces typically have one significant method that carries the 

verb name (Runnable → run). Examples of these naming 

rules are evident across most good software. 

Alternatively a number of attributes or behaviours can be 

wrapped up in one adjective. For example mercurial brings 

the attributes of eloquence, shrewdness and swiftness  

Adverbs are varieties in the same way as adjectives (e.g. 

quickly is a type of speed so the attribute is speed and the 

variety is quickly). The attribute is local to the behaviour it 

modifies (e.g. “Mr Bolt runs quickly” and the knowledge 

that the adverb quickly is a type of speed [noun] shows that 

speed is an attribute used within the run behaviour). 

9.3 Verbs 

As discussed in many texts, verbs are behaviours. 

In our example “everywhere that Mary went the Lamb 

was sure to go”. There is a new noun “everywhere” which 

 
Figure 16. “Mary Had a Little Lamb” class diagram. 



corresponds to “all places” or perhaps “all positions”. The 

verbs in the sentence are “went” (the past form of go) and 

go itself. There is also a dependency between where Mary 

goes and where the lamb goes. 

Recent research [8] on verbs and nouns by psychologists 

show that nouns are easier to learn and understand than 

verbs.  

• An analysis of the dictionary definitions of the 50 

most used verbs and 50 most used nouns showed that the 

average number of different definitions for each verb was 

significantly more than the average number of definitions for 

nouns.  

• Between most spoken languages there is a one-to-

one correspondence between nouns, but the usage of verbs 

shows more divergence. 

• Speech and language development starts with in-

fants learning and repeating nouns before learning and using 

verbs. 

The Google language “Go” is one of a number that iden-

tify analogies by pairing behaviours [verbs] rather than the 

name attached to an abstraction [noun] and so it could be 

argued that there is more likely to be confusion (due to the 

greater ambiguity of verbs). However, Gentner [9] argues 

that the mind chooses analogies using a highest rank of the 

behaviours, and so Go seems to be mimicking that process. 

9.4 Converting Analogies To Classes 

Where we do not need to model attributes or behaviours for 

analogies we can simply model their varieties as the strings 

of their names (or more formally as simple enums). For oth-

er analogies we can choose amongst the different analogical 

structures [12]. Collapsing our requirements and choosing 

to model all our non-empty analogies as classes gives the 

class diagram in in Figure 16. 

9.5 The Semantic cost 

The closer that our software is to natural language the easi-

er it will be to understand. Even though language seems 

easy for us to understand, the rules that underpin it are by 

no means simple. We underestimate the complexities of 

cognitive processes because we are largely unaware of them 

in our conscious mind. IBM Watson's success in the “Jeop-

ardy” challenge is a rare example of algorithmic translation 

of natural language. To deliver algorithmic understanding is 

a task that the AI researchers continue to wrestle with. It is 

likely that the correct identification of the analogies of the 

problem, and their dependencies, is a task that will continue 

to require human endeavor for some time yet. 

9.6 Analogies In Humour 

Growing up, my family and I were given a different version 

of the poem by our Dad: 

Mary had a little lamb. 

Her father shot it dead 

and now it goes to school with her 

between two chunks of bread 

As with most humour the delight is an analogy (Mary 

owning a lamb that goes to school with her) between two 

scenarios that seem so ridiculously different (a strong bond 

of love between child & pet vs slaughtering animals to pro-

vide a lunchtime snack) 

10. Conclusion 

This paper presents a prototype of a complexity metric that 

is based on the principles identified from cognitive psychol-

ogy and computer science. The metric measures the cost of 

understanding software code by employing the same rules as 

those applied to the structure of long term memory and the 

limitations of short term memory. 

Most current software languages store code in flat text 

files (in OO languages the files typically have the structure 

to represent primary abstractions). The software developer 

employs design principles and refactoring to decide where 

to place the code within these files. This is effectively an 

optimisation problem to reduce the cognitive burden (for 

which the complexity metric here could serve as the optimi-

sation function). Restricting to flat files means that, like the 

Crofton School problem, the derivatives of this function are 

unavailable and so it would be difficult to automate the rec-

ommendations of design improvements. However, if the 

code were placed more visually (as with the Self Language 

[13] and Code Bubbles [1] ) then, like the force directed 

graph, the derivatives of the optimisation function could be 

used to automate refactoring.  

In such a visually structured language the software de-

veloper is still needed to correctly identify the abstractions 

and dependencies defined by the requirements. However, it 

may be possible for manual refactoring to become unneces-

sary. Additionally, the same metric could help decide how 

to present abstractions to the code reader, automatically 

moving from a simple switch statement to a more formal 

class structure as the complexity and dependencies grow. 
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