

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

…$10.00.

A Software Complexity Metric Based On Cognitive

Principles

Thomas Mullen

tom@tom-mullen.com

Abstract

The metric is a measure of the cost of understanding soft-

ware and can be evaluated at all levels of the code (from

expression/statement through to library/application). A

working prototype has been validated against manufactured

examples for refactoring, design patterns and cohesion lev-

els. The suggestion is that the metric could be used as part

of an approach to automate a large part of refactoring and

software design.

Categories and Subject Descriptors D.2.8 [Metrics]:

Complexity measures..

General Terms Design, Human Factors, Theory.

1. Introduction

This paper introduces a metric of software design complexi-

ty that represents the cost of understanding unfamiliar code.

The constituent parts of the metric are as follows (a greater

value corresponds to a greater cost):

1) Element cost: Each code element will become an ele-

ment in the memory network of the code reader and will

incur the time costs of committing to long term memory.

2) Cognitive overload penalty: A highly non-linear func-

tion that represents the burden of presenting too many

items at once to the reader.

3) Coupling and cohesion costs: To promote structures

similar to the chunking exhibited in long term memory.

4) Semantic penalty: Not covered directly in the metric

this represents the transmitting of semantic knowledge

about the purpose of the code (primarily by accurate

names on the code elements). Section 9 discusses this in

more detail.

The metric is validated against manufactured examples

for refactoring [6], design patterns [7] and cohesion levels

[14]. I do not attempt any formal, mathematical validation

as the complexity perceived by the mind may not necessarily

prescribe to mathematical theory.

The metric is applied to each element (expression, state-

ments, method, class etc.) and aggregated up to get a total

measure for each method, class, package, application etc.

A comparison is made with the force directed graph al-

gorithm (used to display graphs clearly). The next section

describes the Crofton School problem, a common analogy

amongst the structure of memory, software complexity and

force directed graphs.

2. Crofton School Problem

Crofton primary school (taking children from aged 4 to 11)

is one of the largest in the UK with six classes in each year

(each class has approx. 25-30 children). In the first 4 years

the children remain together in the same class. For the fifth

year the classes are mixed up. Children are allowed to state

who their closest friends are and the school will attempt to

put them together in the same class. Although there is no

limit to the number of friends they can specify, this is typi-

cally just one or two. In Figure 1, Michael has chosen Avi-

nash as his friend and Charles is the only one who has stated

two children as his friends (Omene and Veronica)

This is the background to the problem that is stated more

formally in the next subsection.

 Figure 1. Crofton School Stated Friends Example.

2.1 Statement of Problem

Given a set of children and their stated friendships what is

the optimum seating plan (at desks within classes) that min-

imises unhappiness. Unhappiness occurs from two sources:

1) “I want to sit with my friend”. If a child has stated

a friendship but is not seated close to that friend then

they will be unhappy. The further away they are from

their friend the greater the unhappiness. The value used

for unhappiness is 3 if the child and their friend are in

different classes, 2 if they are in the same class but dif-

ferent desks and 1 if they are seated at the same desk.

2) “Who’s she?” Children are unhappy if they’re seat-

ed at the same desk as a child they have no common

friendship with. The value will be the “degree of separa-

tion” between the two children. In the above example if

Omene and Veronica are sat at the same desk then this

will be 1, but if Belinda and Veronica are sat at the same

desk this will be 2 (the shortest path length on the graph

of friendships). This is also extended to the association

between desks in the same class (again, the unhappiness

value will be the shortest path length on the graph of

friendships).

Figure 2 shows the optimal seating plan for the example

scenario from Figure 1 (there are only 203 unique solutions

if we restrict the children to one class). The red lines (with-

out arrows) show where the “Who’s She?” unhappiness

values exist and the black arrowed lines are the “Be with my

friend” unhappiness values. In each case the number of lines

is indicative of the value.

In the optimum solution. all children are sat at the same

desk as their friends (“Be with my friend” value is 1) with

the exception of Belinda and Charles (“Be with my friend”

value is 2 as they are on different desks in the same class).

Also, the children within each desk are direct friends, with

the exception of Belinda and Michael who’s friendship is via

Avinash (which is why the “Who’s She?” value between

Michael and Belinda is 2).

Moving Belinda to the same table as Charles (Figure 3)

would reduce the “Be with my friend” value between them

from 2 to 1 but this would be offset by an increase of the

“Be with My Friend” value between Belinda and Avinash.

The additional “Who’s She?” unhappiness between Belinda

and the rest of the Desk A is more than the removal of the

“Who’s She?” unhappiness between Belinda and the rest of

Figure 2. Optimum Seating Plan.

Figure 3. Non-Optimal Seating Plan.

Desk B.

This puzzle was developed as an analogy to illustrate the

similarity between coupling /cohesion, the structure of long

term memory and the force directed graph algorithm (Figure

5) and the mapping is discussed more in the sections below.

Software metrics are used to produce code that is easy to

understand and the force directed graph algorithm is used to

aid clarity in visualising graphs. It is not mere coincidence

that a common analogy exists between the cognitive model

and these two.

2.2 Coupling and Cohesion

In software, the children of the Crofton school problem are

code statements and the stated friendships are the depend-

encies between statements. The “Who’s She?” unhappiness

penalty relates [reciprocally] to cohesion (a large value of

“Who’s She?” corresponds to a low Cohesion and a small

value to high cohesion). The “Be with My Friend” unhappi-

ness penalty relates to coupling, the greater the value the

more the coupling. The desks are the code structures we

use to group statements (e.g. methods, classes, package

etc.)

By minimising the combined value of “Who’s She?” and

“Be with My Friend” we are finding code structures that

reduce coupling and improve cohesion.

2.3 Long term Memory structures

Memory Elements are stored as chunks in the long term

memory network (a chunk is “a collection of memory ele-

ments having strong associations with one another but weak

associations with elements within other chunks” [10]). The

children in the Crofton School puzzle are representative of

memory elements, and the friendships are the association

amongst memory elements. The desks/classes are the

chunks of memory elements. Minimising the “Who’s She?”

penalty will improve the associations amongst elements

within a chunk and minimising “Be with my friend” will

promote only weak associations of elements in other

chunks.

2.4 Force Directed Graphs

Many drawing applications use a force directed algorithm to

display connected items. The algorithm works by modelling

a spring between connected elements and a weaker repelling

force between all items. Both forces vary according to the

distance between the elements but in different ways, the

spring force gets larger for larger distances but the repelling

force gets smaller for larger distances. The resultant force

upon each element is calculated, which implies an accelera-

tion. The movement of the elements are allowed to follow

the normal Newtonian model to find a structure that will

result in a resting state (a damping on the velocities is used

to prevent oscillations). The solution for the example sce-

nario is shown in Figure 4.

The children of the Crofton School puzzle are the verti-

ces of the graph and the friendships are the edges. The

Figure 4. Crofton School mapping displayed using

Force Directed Graph algorithm.

Crofton School

Problem

Software Metric Cognition Force Directed

Graph

Friends Dependencies between statements Associations between memory

elements

Edges on Graph

Desk/Class

Structure

Code structure (statement groups, methods,

classes, packages etc.)

Chunks in long term memory

structure

(x,y) position of

graph vertices

“Who’s she?” Cohesion (penalising code elements that have

no association with other statements in a

group produces cohesive statement groups)

“Memory elements within a

chunk should be strongly asso-

ciated with each other….

Spring between

connected vertices

“Be with my

friend”

Coupling (penalising the separation of asso-

ciated statements will reduce coupling)

…and weakly associated with

memory elements in other

chunks”

Repelling force be-

tween all vertices

Figure 5. Mapping between Crofton school problem and Software Metric, Cognition & Force Directed Graph.

“Who’s She?” penalty is represented by the repelling force

between all elements and the “Be With My Friend” is the

spring force between connected vertices. The crucial differ-

ence for the force directed graph algorithm is that rather

than have fixed desks/methods/chunks the (x,y) position of

the element is the variable we optimise upon. For the other

three cases (Crofton school problem, coupling/cohesion and

long term memory) there is no information as to how to

improve any individual solution. For example when we

moved Belinda to the left hand desk, the only way of dis-

covering the variation was to calculate the unhappiness val-

ue before and after. However, to minimise the speed in the

system, the force directed approach utilizes the first order

derivatives (acceleration). This gives a direction to move in

that will (at least most times) improve our solution (this is

also identified by Feathers [4]).

3. Metric Derivation

The metric has been developed to illustrate the conjecture

that “software code is a textual representation of the

memory structure in the mind” [12]. The metric uses a mix-

ture of the cognitive psychologist's models and software

design principles to produce a measure of complexity and is

a prototype implementation of the four minus analogies rule

[12].

3.1 Code Elements

Code elements are expressions, statements, methods, clas-

ses, packages, libraries, modules, applications, suites of ap-

plications and so on. Code elements are presented to the

reader as a structure graph, where statements are child ele-

ments of methods, methods are child elements of classes

etc. The optimum design for the structure graph would be

one capable of being used directly as the long term memory

network within the reader’s mind. Each code element will

incur a time cost to persist to long term memory.

3.2 Cognitive Overload Penalty

The capacity limits of short term memory restrict the num-

ber of elements that can be presented at any time [2]. This

has an effect on the number of child elements that each node

has in long term memory [3,11]. To model this in the metric

each code element will carry a penalty based on the number

of children it has on the structure graph (as the structure

graph is representative of long term memory). There are a

number of strategies for the new reader to identify candidate

associations. Looking purely at pairs of elements would

perform like n
2
, unordered combinations of all subsets (per-

forming like 2
n
) or ordered combinations of all subsets (per-

forming like n!). I have used n! for the prototype as this is

more of the near barrier function identified by Taatgen (Fig-

ure 6, the reciprocal of the proportion correct is a measure

of the complexity)

The exception to this function is when varieties of analo-

gies are presented to the reader [12].

3.3 Coupling And Cohesion

In addition to the structural graph there is a dependency

graph. This is an extended call graph which contains de-

pendencies between expressions and statements as well as

those amongst methods and classes.

The child elements in the structure graph are representa-

tive of memory chunks. A chunk is defined [10] as a collec-

tion of memory elements that are closely related to each

other and loosely related to elements in other chunks. Cohe-

sion metrics measure how closely related code elements

within a chunk are and coupling metrics measure how much

code elements are dependent on elements in other chunks.

Figure 6: Illustration of the Short term memory capacity

limit [2].

Figure 7. Illustrative Example of Structural and Depend-

ency Graphs.

Programmers use spatial imagery for the abstract mental

representation of code [5]. I propose to measure the cohe-

sion amongst code elements within a chunk as a distance

measure on the dependency graph. Additionally to measure

coupling between dependent elements as a distance measure

on the structure graph.

All connections (on both graphs) have a path length and

can either be contributing or non-contributing. Cou-

pling/cohesion costs are only calculated for contributing

links. For the structural graph the parent/child links are non-

contributing but contributing links exist amongst all siblings.

The determination of the contributing links on the depend-

ency graph is less precise and driven by whether coupling

needs to be calculated. For example, a method must have a

dependency upon the return statements within the method.

The requirement that the code reader understand the soft-

ware language means that this connection is already under-

stood. The metric described in this paper attempts to

measure the cost of understanding new code and so it is not

necessary to measure the cost of a dependency that is al-

ready understood.

3.4 Illustration

An example of the structural and dependency graph is

shown in Figure 7. The Structural graph is coloured bold

red and the dependency graph in black (with arrows). Con-

tributing links are solid lines and non-contributing links are

dashed. For the purposes of simplicity the path lengths are 1

for all links on the structural and dependency graphs. The

numbers on the structural contribution links are the mini-

mum path lengths on the dependency graph (this is used to

calculate coupling). The numbers on the dependency contri-

bution links are the minimum path lengths on the structural

graph (used to calculate cohesion).

4. Metric Formulae

The metric uses two graphs based on code elements. Firstly

a structural graph S which is based on how the code is pre-

sented to the reader (e.g. a statement is a group of expres-

sions, a method is a group of statements and fields etc.).

Secondly, a dependency graph D which is an extended call

graph that contains the dependencies between statements as

well as methods.

For each code element i, the individual complexity metric

value is defined in (1). Note: the full version would include

semantic contributions.

(1)

These values can be aggregated up through the structural

graph (2) to get an overall measure for the class, package,

application, etc.

(2)

Where x can be CogCx, element, cognitive, cohesion or

coupling and ci are the child elements of i on the structural

graph S.

The elementi cost is a simple static cost dependent upon

the type of code element (e.g. 1 for a statement, 2 for a

method and 5 for a class).

Defining ai
DEP

 and ai
STRUCT

 as the set of elements at-

tached to element i by a contributing link on the dependency

and structural graphs respectively. Also, pij
DEP

 and pij
STRUCT

as the shortest path length between elements i and j on the

dependency and structural graphs respectively. Then cohe-

sion and coupling are specified as follows:

(4)

(5)

The distance function applied here [x log(x)] was chosen

to promote even spacing with the elements. For example, if

two elements have an equal dependency on a third, then

(ignoring other dependencies for the moment) the position-

ing of the third element on the structure graph should be

equidistant from the both of its two dependencies. In some

ways the choice of distance function here is similar to the

choice of the functions used in the force-directed layout of

graphs, where in some cases x and x
2
 functions have been

used. Empirical research would be necessary to establish

which function produces the best metric value.

cognitivei = ni!

(6)

Where ni is the number of children element i has on the

structural graph allowing for any number of varieties of

analogies. For example a package that contains classes that

all extend the same abstract class (and are therefore varieties

of that analogy) has ni =1. Similarly the switch statement

has ni =1 as its children (the case statements) are varieties of

an analogy [12].

5. Results From Prototype

The following sections give the values of the metric for

manufactured examples. A proof of concept prototype

(written as an eclipse plugin) was used to calculate the val-

ues. All code is available from the author’s website.

5.1 Cohesion Level

Sibling elements on the structural graph that have direct

associations will have a low cohesion value within the met-

ric. In this way sequential cohesion [14] is rewarded.

The example here (Figure 8) shows how the metric is

consistent with the communicational level of cohesion. I am

assuming that method1 is always called before method2, so

moving the statement that calls methodB, as shown, doesn't

modify the behaviour of the application. In the initial posi-

tion, the statement that calls methodB is a sibling of the

other statements in method2 and so the cohesion metric is

calculated between them. This results in a high value as

methodB and the variables in the other statements of meth-

od2 are far apart on the dependency graph. When we move

the methodB call, the cohesion metric is now calculated

with the statement in method1. In our example, Tar-

get.methodA() and OtherTarget.methodB() are within

the same package and are closer on the dependency graph

due to the dependencies amongst that package. This results

in an overall reduction in the cohesion metric.

5.1 Refactoring

5.1.1 Extract Method

The extract method refactoring [6] example is in Figure 9.

The biggest gain in splitting up the before method is with

the cognitive penalty. Also of note is that cohesion is im-

proved at the expense of worse coupling and element costs.

5.1.2 Inline Method

For the inline method example (Figure 10), moving all the

 Element Cognitive Cohesion Coupling Total

Before 8 26 1381 174 1589

After 9 10 5 176 200

Figure 8 : Cohesion Level Example.

Is Compared to

 Element Cognitive Cohesion Coupling Total

Before 10 11 1.92 37.60 60.52

After 6 25 2.22 8.74 41.96

Figure 10. Refactoring Inline Method.

Is compared to :

 Element Cognitive Cohesion Coupling Total

Before 9 5041 9.56 11.15 5070.71

After 12 15 2.94 33.45 63.39

Figure 9 :Refactoring Extract Method.

behaviour to one method doesn't break the short term

memory capacity limit (the cognitive penalty function is a

near barrier function). Consequently the improvement in

coupling is more than enough to offset degradation of the

cohesion cost and cognitive penalty.

5.2 Design Patterns

The design pattern tests centre around a fictitious require-

ment that a calling abstraction needs to call behaviour(s) on

a target abstraction. The three versions differ based on the

complexity of the caller and target behaviours and the de-

tailed relationships between caller and target. In the dia-

grams The pink boxes in Figures 11-13 represent the

abstractions of the problem (with <<analogy>> stereotypes

to represent abstractions and <<variety>> to represent an

implementation of an abstraction).

1) Simple (Figure 11): A simple, single target behav-

iour for a number of varieties and there is only one

caller of this behaviour.

2) Complex 1 to 1 (Figure 12): Complex set of target

behaviours for a number of varieties. Each of the

varieties has a one-to-one dependency with the va-

rieties of the calling abstraction.

3) Complex independent (Figure 13): Complex set of

behaviours for a number of varieties. Behaviours

are called by various unrelated callers.

These versions have been chosen so that the approaches

below will be the preferred designs of behaviourA for each

version in turn

a) Switch: Simple method that utilises switch

b) Hierarchy: target behaviours are incorporated into

the varieties of the calling code, similar to the

Template pattern.

c) Strategy: Strategy pattern, behaviours are grouped

independent of calling code.

Table I shows that the metric values for the preferred de-

signs are the smallest for the three versions of requirements.

Table I : Metric Values for Design Pattern Examples

 Proposed Design

 Switch Hierarchy Strategy

Simple 107 171 421

Complex 1 to 1 3386 1374 1513

Complex Independent 10724 3640 1321

 As the code author deliberates over candidate designs

they will try and determine which choice will provide the

minimum complexity (whilst still being consistent with re-

quirements, both implicit and explicit). The essential com-

plexity can be considered the choice with the global

minimum complexity value. Note that this is not a measure

of just algorithmic complexity; it rewards code structures

that promote ease of understanding. Code simplicity is ar-

guably as valid a requirement as the algorithmic behaviour

needed, since the majority of software development costs

are in support and maintenance. Further, complexity is as

much a function of human cognition as it is any objective

measure of the algorithm.

Figure 11. Simple Design Example.

Figure 12. Complex 1to1 Design Example

6. Extensibility

To investigate extensibility we can measure each design

choice for different numbers of varieties of the abstractions.

In the example below I will compare the increase in com-

plexity between implementing one and five varieties of the

target and caller abstractions. The difference between the

two measures must be normalised both by the number of

additional varieties and the complexity of implementing just

one variety:

(6)

Where CogCxe
(1)

 is the value for the essential complexity

solution for 1 variety, and CogCx
(n)

 is the value of the can-

didate solution with n varieties implemented.

Table II shows the calculated extensibility factor for the

design pattern examples (for each case I use an approximate

to CogCxe
(1)

 by taking the minimum value of CogCx
(1)

amongst the three candidate solutions). In this example, the

design choice with the lowest extensibility factor coincides

with the lowest metric value. This may not always be true.

A software designer may accept additional complexity when

coding the first variety for the promise of improved overall

complexity when all varieties are implemented at a later

date. Accurate appreciation of the extensibility factor is a

design skill.

7. Comparison With Other Metrics

The simplest measure of complexity is counting the lines of

code, and is directly related to the element cost. This can be

a successful measure for applications that are already well

designed (could be used as a crude comparative estimate of

maintenance and support costs amongst applications).

The scope restrictions applied to method local variables

means that coupling can't exist between statements in differ-

ent methods. Most coupling and cohesion metrics operate

solely at the level of classes and/or methods as this is where

a good deal of the coupling/cohesion is present. But as we

have seen in the method refactoring example, coupling and

cohesion at the statement level can influence the design.

McCabe's cyclomatic complexity metric measures the

number of possible paths in a method. This metric tries to

warn against a large number of elements presented in a

chunk (to keep within short term memory capacity limits).

The cognitive penalty element of CogCx represents the

complexity that McCabe measures.

The examples in Section 5 show that we rarely improve

all the parts of the metric (element cost, coupling, cohesion,

cognitive). Rather, some parts improve and some worsen

but the overall measure of complexity can be reduced.

Software design can be considered an optimisation problem

where the objective is to minimise complexity (presented to

the code reader) whilst satisfying all the requirements. Re-

quirements can be explicit (e.g. VAT must be added to all

invoices and it must be possible to change the rate) or im-

plicit (e.g. unwritten performance requirements such as the

application must respond to queries in a reasonable time and

run on a pc with the standard cpu and memory limitations).

The candidate solutions are like islands to one another and

so our optimisation is most like a constrained Integer pro-

gramming problem.

Perhaps the most useful values in optimisation problems

are the first and second order derivatives as these suggest

which direction to move for the greatest benefit. However,

these are unavailable to us in our software design optimisa-

tion problem. This may explain why metrics aren't used as

much as we would wish they were. We can identify individ-

ual values that seem to be outside of usual variance but we

are not guaranteed that tactics to reduce those individual

outliers will lead to a reduction in the overall complexity.

8. Metric Parameters

Although not explicitly stated in the metric formulae, there

is the capability to apply constants to all or part of the equa-

tions. These parameters could be empirically researched to

Figure 13. Complex Idependent Design Example.

Table II. : Extensibilty Measures For Design Pattern

Examples

 Switch Hierarchy Strategy

Simple 0.23 0.39 0.77

Complex 1 to 1 4.95 0.78 0.85

Complex Independent 5.39 3.23 1.05

allow the metric to match the minds perception of complexi-

ty. This would be influenced not only by the language but

also whether tools are available to the developer. The ability

to traverse straight to a method declaration via a single key

press (e.g. F3 in eclipse) lessens the impact of our short

term memory time limit when traversing links. Consequently

we may allow the distance function on the structural graph

to be reduced.

9. Semantic

Computer scientists refer to them as abstractions, cognitive

psychologists as analogies and cognitive linguists as meta-

phors. They are the essence of intelligence, the building

blocks of our cognitive abilities. In mapping the similarities

between two or more objects and building up a structure,

we lay down memories that allow us to use existing

knowledge in new situations and can point to new under-

standing and breakthroughs. Mullen[12] showed the ubiqui-

ty of analogical code structures in code (not just as a

class/interface construct). The description of an analogy is

shown in Figure 14. The discussion in this section will also

show that analogies are the common link between natural

language and software (Figure 15 gives a précis of the map-

ping) .

As an example consider the following well known nurse-

ry rhyme as a statement of a fictional set of requirements

functional requirements.

Mary had a little lamb.

Its fleece was white as snow

and everywhere that Mary went

the lamb was sure to go.

The complete analogical analysis of our requirements are

discussed in the following sub-sections which will lead to

the diagram in in Figure 16.

9.1 Nouns

Common nouns are analogies, proper nouns are varieties

As a proper noun “Mary” is a variety of some analogy as

yet unstated. We may use our experience to establish that

Mary is a variety of the “girl” analogy or a variety of the

“shepherdess” analogy. Which analogy is appropriate will be

dependent upon the purpose that we are modelling Mary (in

Figure 14.Analogy Structure.

Figure 16. “Mary Had a Little Lamb” analogical diagram.

Lexical Category

Noun Proper Variety

Common Analogy

Verb Behaviour

Adjective/

Adverb

Descriptive Variety

Modifier Additional behaviours

and/or attributes to ex-

isting analogy

Figure 15. Mapping of word types to analogical struc-

ture elements.

this example these are requirements that are yet to be stated

or discovered). For the moment I will treat Mary as a sin-

gleton.

As a common noun, “lamb” is an analogy, the attributes

and behaviours for which will become apparent..

At this point it is worth mentioning some of the excep-

tions and pitfalls. Nouns (as with all words) can be subject

to ambiguity due to:

• homonyms, where the same sounding and/or writ-

ten word can have more than one unrelated meaning (e.g.

bank can be a financial institution or the bank of a river)

• polysemy, where the same sounding and/or written

word has more than one related meaning. (e.g. something

you can bank on is a certainty, and that has it's roots in what

used to be perceived as the stability of banks)

• metonymy, where a simple attribute of a complex

concept is used to identify the whole. For example “The

White House” refers to the office of the President of the

United States (i.e. we should not model a house that is

white). The name comes from a relatively minor attribute

(the colour of the external walls of a former home now used

as the office building)

9.2 Adjectives

Adjectives can either be descriptive or noun modifiers.

Descriptive adjectives are varieties of analogies. When

applied to a noun(analogy) this infers two things. Firstly that

the lamb analogy has an attribute that the adjective is a vari-

ety of (the attribute is itself a noun/analogy). Secondly that

the instance to which the adjective is applied to has the val-

ue of the adjective.

In our example “little” is a variety of the “size” analogy.

So the lamb analogy has a size attribute and the particular

instance (which I will call “Mary's Lamb”) has “little” as it's

variety/value of size. The choice of which attributes and/or

behaviours we model for the lamb analogy is directly driven

by the purpose that we need to view the lamb (for example

our purpose does not require us to model the fact that the

lamb has eyes or a mouth). We model attributes as specified

by the requirements in the same way that our mind chooses

analogies based on purpose. Similarly, size is an analogy and

can have many attributed but as we don't need them to satis-

fy our requirements we model only the names of the analo-

gy/variety.

Modifier adjectives are a way to append behaviours to

an existing analogy

As will be discussed in the next section, behaviours are

verbs. Verbs can sometimes be used with both an object

noun (the thing doing the action) and a subject noun (the

thing upon which the action is done). For example.

Dogs love bones

Pratibha compares the scores.

In these instances the nouns are already named, but if we

needed to attach a name to them (to make the application of

the behaviour/verb more abstract) what do we choose? To

identify the object noun we nominise the verb usually by

adding -or or -er to the verb root (e.g. the dog is the lover

[of bones], Pratibha is the comparator). To identify the sub-

ject, we adjectivise the verb usually by adding -ible or -able

to the verb root (scores are comparable, bones are lovea-

ble).

When the software programmer attempts to model such

behaviour, it is the dependencies that will drive whether it

should be placed with the subject or the object (more specif-

ically the impact of the dependencies on the coupling and

cohesion metric). For example, sometimes all the compare

logic will exist in the comparator, in other cases our subject

noun/analogy will need to have some of the compare logic,

for which we will label it as a comparable element. Java

interfaces are sometimes adjectives (Runnable, Comparable,

etc.) and in these cases they almost certainly end in -able or

-ible . These interfaces modify the existing analogy to im-

plement some or all of a behaviour. This is why these inter-

faces typically have one significant method that carries the

verb name (Runnable → run). Examples of these naming

rules are evident across most good software.

Alternatively a number of attributes or behaviours can be

wrapped up in one adjective. For example mercurial brings

the attributes of eloquence, shrewdness and swiftness

Adverbs are varieties in the same way as adjectives (e.g.

quickly is a type of speed so the attribute is speed and the

variety is quickly). The attribute is local to the behaviour it

modifies (e.g. “Mr Bolt runs quickly” and the knowledge

that the adverb quickly is a type of speed [noun] shows that

speed is an attribute used within the run behaviour).

9.3 Verbs

As discussed in many texts, verbs are behaviours.

In our example “everywhere that Mary went the Lamb

was sure to go”. There is a new noun “everywhere” which

Figure 16. “Mary Had a Little Lamb” class diagram.

corresponds to “all places” or perhaps “all positions”. The

verbs in the sentence are “went” (the past form of go) and

go itself. There is also a dependency between where Mary

goes and where the lamb goes.

Recent research [8] on verbs and nouns by psychologists

show that nouns are easier to learn and understand than

verbs.

• An analysis of the dictionary definitions of the 50

most used verbs and 50 most used nouns showed that the

average number of different definitions for each verb was

significantly more than the average number of definitions for

nouns.

• Between most spoken languages there is a one-to-

one correspondence between nouns, but the usage of verbs

shows more divergence.

• Speech and language development starts with in-

fants learning and repeating nouns before learning and using

verbs.

The Google language “Go” is one of a number that iden-

tify analogies by pairing behaviours [verbs] rather than the

name attached to an abstraction [noun] and so it could be

argued that there is more likely to be confusion (due to the

greater ambiguity of verbs). However, Gentner [9] argues

that the mind chooses analogies using a highest rank of the

behaviours, and so Go seems to be mimicking that process.

9.4 Converting Analogies To Classes

Where we do not need to model attributes or behaviours for

analogies we can simply model their varieties as the strings

of their names (or more formally as simple enums). For oth-

er analogies we can choose amongst the different analogical

structures [12]. Collapsing our requirements and choosing

to model all our non-empty analogies as classes gives the

class diagram in in Figure 16.

9.5 The Semantic cost

The closer that our software is to natural language the easi-

er it will be to understand. Even though language seems

easy for us to understand, the rules that underpin it are by

no means simple. We underestimate the complexities of

cognitive processes because we are largely unaware of them

in our conscious mind. IBM Watson's success in the “Jeop-

ardy” challenge is a rare example of algorithmic translation

of natural language. To deliver algorithmic understanding is

a task that the AI researchers continue to wrestle with. It is

likely that the correct identification of the analogies of the

problem, and their dependencies, is a task that will continue

to require human endeavor for some time yet.

9.6 Analogies In Humour

Growing up, my family and I were given a different version

of the poem by our Dad:

Mary had a little lamb.

Her father shot it dead

and now it goes to school with her

between two chunks of bread

As with most humour the delight is an analogy (Mary

owning a lamb that goes to school with her) between two

scenarios that seem so ridiculously different (a strong bond

of love between child & pet vs slaughtering animals to pro-

vide a lunchtime snack)

10. Conclusion

This paper presents a prototype of a complexity metric that

is based on the principles identified from cognitive psychol-

ogy and computer science. The metric measures the cost of

understanding software code by employing the same rules as

those applied to the structure of long term memory and the

limitations of short term memory.

Most current software languages store code in flat text

files (in OO languages the files typically have the structure

to represent primary abstractions). The software developer

employs design principles and refactoring to decide where

to place the code within these files. This is effectively an

optimisation problem to reduce the cognitive burden (for

which the complexity metric here could serve as the optimi-

sation function). Restricting to flat files means that, like the

Crofton School problem, the derivatives of this function are

unavailable and so it would be difficult to automate the rec-

ommendations of design improvements. However, if the

code were placed more visually (as with the Self Language

[13] and Code Bubbles [1]) then, like the force directed

graph, the derivatives of the optimisation function could be

used to automate refactoring.

In such a visually structured language the software de-

veloper is still needed to correctly identify the abstractions

and dependencies defined by the requirements. However, it

may be possible for manual refactoring to become unneces-

sary. Additionally, the same metric could help decide how

to present abstractions to the code reader, automatically

moving from a simple switch statement to a more formal

class structure as the complexity and dependencies grow.

Acknowledgments

To Michael Feathers, Bernie Mullen and Vasanti Persad for

their improvements to the paper.

References

[1] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman

Karumuri, William Cheung, Joshua Kaplan, Christopher

Coleman, Ferdi Adeputra, and Joseph J. LaViola, Jr.. 2010.

Code bubbles: a working set-based interface for code under-

standing and maintenance. In Proceedings of the 28th interna-

tional conference on Human factors in computing systems

(CHI '10). ACM, New York, NY, USA, 2503-2512.

DOI=10.1145/1753326.1753706

[2] N. Cowan. The Magical Number 4 in Short-term Memory: A

Reconsideration of Mental Storage Capacity. In Behavioral

and Brain Sciences, Vol. 24, No. 1. (February 2001), pp. 87--

185. (2001)

[3] D. K. Dirlam. Most efficient chunk sizes. In Cognitive Psy-

chology, 3:355--359, 1972.

[4] Michael Feathers. 2011. Discovering Hidden Design.

http://drdobbs.com/architecture-and-design/231002664

[5] Maryanne Fisher and et al. Using Sex Differences to Link

Spatial Cognition and Program Comprehension. In Proceed-

ings of the 22nd IEEE International conference on software

maintenance (2006) 289--298

[6] M. Fowler, K. Beck, J. Brant, and W. Opdyke. Refactoring:

Improving the Design of Existing Code (1999). Addison-

Wesley ISBN 0-201-48567-2.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-

sides. 1995. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA.

[8] Gentner, D. (1982). Why nouns are learned before verbs: Lin-

guistic relativity versus natural partitioning. In S. A. Kuczaj

(Ed.), Language development: Vol. 2. Language, thought and

culture (pp. 301-334). Hillsdale, NJ: Lawrence Erlbaum As-

sociates.

[9] D. Gentner. Structure-mapping: A theoretical framework for

analogy. In Cognitive Science, 7, pp 155-170 (1983).

[10] F. Gobet, P. C. R. Lane, S. Croker, P. C-H. Cheng, G. Jones,

I. Oliver, and J. M. Pine. Chunking mechanisms in human

learning. In TRENDS in Cognitive Sciences, 5, 236--243.

(2001).

[11] J. N. MacGregor. Short-term memory capacity: Limitation or

optimization? In Psychological Review, 94(1):107--108,

1987.

[12] Thomas Mullen. Writing code for other people: cognitive psy-

chology and the fundamentals of good software design princi-

ples. In Proceeding of the 24th ACM SIGPLAN conference on

Object oriented programming systems languages and applica-

tions (OOPSLA '09). ACM, New York, NY, USA, 481-492.

DOI=10.1145/1640089.1640126

[13] Randall B. Smith and David Ungar. 1994. Self: The Power of

Simplicity. Technical Report. Sun Microsystems, Inc., Moun-

tain View, CA, USA.

[14] E. Yourdon, L. Constantine. Structured Design (1979). Pren-

tice-Hall.

