

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA.
Copyright © 2009 ACM 978-1-60558-734-9/09/10…$10.00.

Writing Code for Other People
Cognitive Psychology and the Fundamentals of Good Software

Design Principles

Thomas Mullen
tom@tom-mullen.com

Abstract
This paper demonstrates how the cognitive model of the
mind can explain the core fundamentals behind widely ac-
cepted design principles. The conclusion is that software
design is largely a task of chunking analogies and presents a
theory that is detailed enough to be accessible to even the
most inexperienced programmer. The corollary of which is a
pedagogical approach to understanding design principles
rather than the necessity of years of software development
experience.

Categories and Subject Descriptors D.2.2 [Design Tools
and Techniques]: Object-oriented design methods. J.4 [So-
cial and Behavioral Sciences]: Psychology– abstract data
types, polymorphism, control structures.

General Terms Design, Human Factors, Theory.

Keywords chunking analogies; 4 minus analogies

1. Introduction
Making code easier to understand is the primary driver be-
hind the phase of software design that does not change how
the code behaves or performs. Design principles and soft-
ware languages have evolved over generations to influence
code authors to produce code structures that are easy to un-
derstand. At the same time psychologists have been unlock-
ing the secrets of how the mind learns and understands. Later
sections will illustrate the many similarities between the cog-
nitive model and widely accepted design principles. This will
serve as supporting evidence for the claim that code pro-
duced using such principles & languages is a textual repre-
sentation of the memory structures within the brain.

The mapping between cognitive psychology and software

design leads us to the discovery of the importance of analo-
gies. If Structured Design is decomposition of the problem
using the discipline of chunking, then Object-oriented De-
sign is decomposition using the discipline of identifying
analogies.

1.1 The Need to Learn

A major portion of the time spent coding and designing is
taken up in learning and understanding the application code.
This is driven by:
1. The majority of the development cost is spent maintaining

and extending code.

a) Software applications typically last many multiples of
the time it takes to develop the initial version.

b) For successful applications it is common for team size
to grow right up to the point that it becomes legacy.

2. Access to the original designer/author is uncommon.

a) The lifetime of a software application will span many
cycles of staff turnover.

b) Global development of applications is becoming in-
creasingly common. This includes regions with little or
no window of common work hours.

Consequently, most software tasks are to extend/mend ex-
isting software where any understanding must be gleaned
directly from the code.

Further (ignoring incapable or saboteur programmers),
most bugs and deficiencies can be put down to failures in
either understanding the requirements or understanding the
existing code. A programmer who has complete familiarity
with both the code and the requirement is most likely to es-
tablish the full extent of changes and the full extent of the
impact of any changes on the existing behavior.

There is a great cost involved in learning/understanding
the code and potentially further costs for fixing the issues
that arise due to its misunderstanding. Where we have a

choice, investing in writing code that is easy to understand
will produce efficiencies and cost savings throughout the life
of the application.

1.2 Current Texts

Many texts on design principles implicitly require the reader
to possess a certain level of experience in order to apply the
principles appropriately.

When experts pass on their design skills, it is easy to fall
in the trap of using an explanation that appears to them to be
a natural consequence but, in fact, leans on the very same
experience that guides them when executing that skill. Tell-
ing a child who is unfamiliar with a keyboard layout that the
semicolon key is next to the “L” key is of limited use as a
guide because finding the “L” key requires the same search-
ing strategy as finding the semicolon key. When the touch
typist hits the “L” key it is done automatically, with very
little conscious notion of how the finger arrived at the key.
The process seems a perfectly natural one. The guide of be-
ing next to the “L” key is useful only to the expert. The irony
is that it is the novice that has most need for a guide. In Mar-
tin Fowler’s excellent Refactoring book [9], a guide on when
to employ the “Extract Method” rule is “if the method is too
long or the code needs a comment to understand”. The ability
to recognize that the method is too long (or where it needs
comments) is a product of the same experience as the ability
to employ the rule appropriately. To maximize the value to
the novice, the guide should rely solely on the limited experi-
ence they possess (e.g. the semicolon is on the middle row of
letters to the right).

2. Cognitive Psychology
The aspects of cognitive psychology that are pertinent to our
cause are discussed in the following sections. The main ele-
ments are as follows:
1. Chunks - Gobet et al [12] define a chunk as “a collection

of memory elements having strong associations with one
another but weak associations with elements within other
chunks”.

2. Short-term memory (STM) - also known as working
memory, STM holds the items that have current focus
(e.g. when solving problems) and is also responsible for
the formation of chunks to be committed to long-term
memory (via rehearsal). STM is limited by capacity [17]
and time (<10secs without rehearsal).

3. Long-term memory (LTM) – a seemingly infinite re-
source. LTM is where we store our memories and experi-
ence ready for recall into the STM when solving
problems. The only known restriction to LTM is the time
that it takes to record (2s -8s).

4. Expert knowledge - experts and novices differ in the way
they approach and solve problems. More crucially for de-
sign, a code structure that improves clarity for the novice
may have a detrimental effect for the expert [22].

5. Analogical reasoning - analogies are ubiquitous in human
intelligence [14]. Identifying and choosing analogies is
driven by similarities, structure and purpose [15].

2.1 Chunking and Memory

Mathematical analysis of memory networks has shown that
searching is optimized when the nodes are chunked to four or
five elements [8] (there is an argument that the STM capacity
limit is an evolutionary choice to force production of optimal
long term memory networks [16]). Overloading STM will
either necessitate dynamic chunking by the mind or will
cause a sense of confusion. Chunking our code into groups
of four or fewer elements (either visually or using language
structures) means that subsequent readers are less likely to
suffer cognitive overload of STM and the confusion it can
bring.

When we try to understand a concept or find a solution to
delivering a requirement, the mind naturally chunks related
elements together. This is not necessarily immediate and may
be the result of trial and error. The stronger the association
between two elements (e.g. two methods that use the same
fields) the more likely they will be chunked together. This
chunking characteristic has parallels in many design princi-
ples. The Data Object is a collection of fields that are related
together. Data normalization is a process driven by the desire
for chunking using classes and/or database tables to partition
the chunks. Although it is not their sole purpose, packages
can be used to chunk classes, classes can be used to chunk
methods/fields and methods can be used to chunk statements.
In advising that a class have no more than 2 or 3 collabora-
tors, Beck and Cunningham’s CRC model is chunking the
view of relationships to no more than four elements. Many of
Fowler’s refactoring rules are strategies to chunk elements
(some are identified in section 4.2).

The laws of Prägnanz, from the Gestalt branch of psy-
chology, identify how we recognize groups of elements.
Many code authors employ these laws to indicate the element
chunks so as to pass on the knowledge of the associations
(thus saving the reader from the same, potentially costly,
process of identifying them). For example:
• Chunking using the law of proximity. In the example be-

low, statements are visually grouped together using blank
lines. Lines that are close together will be chunked to-
gether by the reader.
 printHeader();

 printMsg();

 processNew();

 update();

 printFoot();

• Chunking using the law of similarity. Indented lines are
associated together due to the similarity of their shape. In
the example below the statements executed as part of the
loop will be chunked together by the reader.
 sum=0;

 sumOfSquares=0;

 for(int I=0; I<num; I++)

 {

 sum += x[I];

 sumOfSquares += x[I] * x[I];

 }

Chunking code elements can be likened to grouping mag-
nets that are sometimes attached by springs. There is a repel-
ling [magnetic] force between all elements to prevent them
being grouped together when there is no association. The
associations [springs] are attractive forces (stronger associa-
tions are represented by stronger springs). The strong asso-
ciations will bring some elements together and their
combined magnetism will repel elements that have weaker
(or no) associations. For example, if a class evolves so that
one half of the methods use one portion of the fields and the
other half the remainder then the stronger associations within
each of the groups will lead to the pairs separating and pro-
vide an argument for splitting up the class.

Many texts already identify that the decomposition asso-
ciated with structured design is a reflection of the chunking
process which the mind employs to understand the problem.
The guide that we should maximise cohesion and reduce
coupling is the optimization function that produces chunks as
defined by psychologists (“a collection of memory elements
having strong associations with one another but weak asso-
ciations with elements within other chunks”).

2.2 LTM structure and relearning

The storage of items in LTM has been successfully modeled
as “discrimination” nets [11]. Discrimination nets have been
used, among other things, to model decision making, concept
formation and recognition processes. The theory proposed
that elements of memory are built up into a connected net-
work. For each element to be added to the net, the place
where it is to be incorporated is firstly identified. The net is
then either extended or modified to allow the new data. In
addition to the parent/child links of the network, each node
has an associated “image” (letter, word, sound, visual image,
feeling, etc). Anyone familiar with mind maps will immedi-
ately recognize this structure.

Building up the networks in LTM is achieved by “re-
hearsal” (after they have been loaded into STM). The sole
cost of LTM is purely in the amount of time it takes to suc-

cessfully rehearse elements (typically of the order of sec-
onds). However, new elements may restructure the net so as
to break the links to existing elements. These existing ele-
ments need to be re-learned to allow the building of a net-
work that accommodates all the learning. Naturally, any re-
learning requires additional time costs (and sometimes frus-
tration on the part of the student who is annoyed at them-
selves for seemingly going backwards).

Meyer’s open-closed principle is the echo of the mind’s
process to minimize re-learning costs. This makes evolution-
ary sense. For example, if I see someone being violently ill
after eating a black and yellow lizard I stand a better chance
of survival (and passing on my genes) if I remember to steer
clear of such reptiles. If I subsequently see someone feasting
heartily on a black and yellow snake with no after effects, I
will want to remember that snakes are good to eat without
modifying the knowledge that lizards are dangerous. I will
want my memory to be open for extension but closed for
modification.

Our minds have evolved so that they structure LTM to op-
timize searching and minimize re-learning costs. If we struc-
ture our code to mimic LTM then it will be more easily and
quickly absorbed (and understood) by subsequent readers.
Design principles are symptoms of how the mind works
rather than rules based on mathematical algorithms.

2.3 Simplified Cognitive Model

This section will detail a (very) simplified model of the cog-
nitive elements (see Figure 1). Without wishing to become
involved in the vigorous debate [5] on the capacity of STM
the assumption will be that the limit is four chunks.

The gateway to an expanse of information the size of a
planet (LTM) is a four window portal (STM). Adding to, or
retrieving from, LTM can only be performed through the
four windows. In something akin to Google Earth, the win-
dows can contain big items (countries, states, cities) or zoom
in to fine grain items such as words on a book. However,
only one item (chunk) can be pulled in to each window at
any time and, unless rehearsed, they will float back down to
the web of LTM and soon (typically <10sec) disappear from
our conscious.

The topics we desire to learn are interconnected elements
like balls of spaghetti. In traditional topics, such as physics,
teachers unravel and reshape the complex connections and
feed it to students so that it fits through STM and has a good
chance of reshaping into something useful on the other side
(LTM). For the software application, design principles influ-
ence the programmer to create a spaghetti ball that is already
reshaped and unraveled. Indeed the ideal situation would be
that the application could be simply poured through the por-
tal, where the only limitation was the flow rate (the time
taken to commit to memory). The less complex the transla-
tion between the software code and the structure of the LTM

network, the less likelihood of mistakes by a new reader in
formulating (i.e. understanding and learning) and therefore
the less likelihood in needing to restructure their memory
network (and the associated possibility of re-learning being
necessary).

2.4 Evolution

Fred Brooks “No Silver Bullet” paper [2] talks about the
essential complexity of the problem and the accidental com-
plexity that we may bring to the solution by our choice of
language (e.g. assembler) or design. Brooks surmised in
1986 that the current high-level languages have evolved to
their limit. If we also surmise that the evolution of languages
and design principles has been driven by the desire to make

code easier to understand (as that is where the biggest influ-
ence of cost is), then by Darwinian argument:

CONJECTURE Current software languages and design prin-
ciples guide a programmer to produce code that is a direct
textual representation of the memory network of the solution
within the brain (subject to the constraints of short term
memory).

2.5 Cognitive Load

In studies of cognitive load for the effectiveness of training
strategies [3], two principles of note are “Redundant Infor-
mation” and the “Split Attention Effect”:

Figure 1. Simple Cognitive Model.

If information is added that simply restates existing points
and adds no extra insight, the concept is more difficult to
comprehend/learn. The redundant information is not neces-
sarily benign; it may take up scarce STM resources, which
leaves less capacity to understand the intended concepts. For
example, the comments associated with a simple getter
method will usually just restate the method signature (there is
no further insight to add). These comments can add to the
complexity of the code.

In the split attention effect, if text that supports a picture is
presented separately from the picture it is more difficult to
comprehend/learn than if the text were displayed meaning-
fully upon the picture itself. In this instance additional items
in STM are required to keep tracks of the links between the
text and the picture. This leaves less capacity to compre-
hend/learn the concepts. Adding layers of indirection is a tool
often used by the software programmer (for example chunk-
ing code lines into a separate method as in the extract method
in Fowler’s “Refactoring”). In doing so, however, we are
increasing the cognitive load on the code reader, as they are
additionally burdened by the newly introduced links.

Traversing a layer of indirection in the code may have
both time and capacity penalties for STM. For example
switching to another class to examine the workings of a
called method may take a few seconds (seconds count with
STM). Each level that is traversed may need to be under-
stood (including peripheral items), taking up STM capacity
and pushing the original contents out where they can no
longer be rehearsed. We are remarkably adept at chunking all
this information to keep a few levels still in STM. However,
there is a limit, for which there will be no warning. Just a
realization that we no longer remember how/why we got to
this part of the code.

Each indirection appears not to make the code overly
complex, as, when looked at in isolation, the additional bur-
den is no more than other pre-existing indirections. Unless
we are frugal, it is all too easy to breach the limit that results
in confusion when traversing the path. IDEs can help to re-
duce the cognitive overhead (e.g. quick views on methods
etc) as can manual memory paging (writing down). Whilst
there are benefits to employing indirections (e.g. for chunk-
ing) the cognitive model also identifies a cost.

2.6 Code for Experts and Novices

The more expert we are, the more we scan the code rather
than read it. The patterns in the visual area are processed and
matched with templates in memory that have built up over
the months and years of our experience. These templates
allow the expert to immediately “see” the structure (as well
as anomalies) as if the processing was done as part of the
subconscious [7]. For experts it is therefore more beneficial
to have as much code as possible in the field of vision (the
split attention effect is also reduced). However if too much

code is placed in the field of vision of the novice then cogni-
tive overloading is possible. Novices benefit from the code
being structured to direct their attention to a few items at a
time.

Expertise of part or all of a software application is not re-
stricted to programmers with vast experience. Certainly, a
general software expert will find it easier than a program-
ming novice to pick up a new software application. How-
ever, each of us (novice or expert) immediately becomes an
expert in any code that we write by the necessity of having to
fully understand the problem and solution in order to get it to
work. Also, the software application as a topic is small and
well contained when compared against conventional topics
such as Physics etc. Consequently it may take only a matter
of months or a year before even an inexperienced program-
mer becomes expert in part or most of the application.

As an example, novices will typically prefer a more ag-
gressive normalization than experts as this provides them
with the chunking of the data and thus reduces cognitive
overloading. The expert, however, has enough knowledge
templates in memory to “see” the chunking and will perceive
such normalization as a layer of indirection that serves no
purpose and indeed gets in the way of understanding.

There will always be the contradictory aims of keeping as
much in the visual field for the expert and formally chunking
to reduce cognitive loading for the novice. There must be
tolerance on both sides. It won’t take long for the novice to
become an expert in the application when they will benefit
from an expert layout. Conversely most teams have signifi-
cantly more novices than experts so the “greater good” may
mean that the expert should suffer a heavier indirection over-
head attributed to chunking.

When coding we may start with a base that is clear and
simple, but as we continue to implement the full require-
ments we will append code on to that base. Being an expert
in the code that we write means that there is a natural creep
to make more code present in the visual field. Code reviews
(in addition to other benefits) are useful for alerting us to
complexities that as authors we become oblivious to.

2.7 Analogical Reasoning

To many psychologists, analogies lie at the heart of human
intelligence. Some reveal new insight (e.g. Niels Bohr’s
model of the atom as a small solar system) and others allow
us to transpose existing skills to new tasks (e.g. being able to
pilot a motor boat when we have only ever been trained in
driving a car). In his presidential lecture [14], Hofstadter sees
analogy at the core of cognition and illustrates their ubiquity.
Analogies both facilitate the leaps in humankind’s under-
standing and are at the very heart of our everyday cognitive
processes. They are the building blocks of how we view con-
cepts.

Figure 3. Example Class Hierarchy to illustrate the
elements of an analogy.

Holyoak & Thagard [15] identify three broad constraints
in choosing analogies - Similarity, Structure and Purpose.
For example, a games programmer may model a tiger’s be-
havior dependent upon its state, e.g. hungry, injured, cor-
nered etc. The tiger analogy in this case has the different
states as the varieties and the structure elements such as
movement and likelihood of attack. However, when the
World Wild Fund for Nature (WWF) looks into the threat of
extinction to the tiger the structure elements are environment,
breeding cycles, current population etc. In the WWF analogy
the tiger is a variety and is similar to other endangered spe-
cies such as the panda. It is purpose that determines the
choice of analogy for the games programmer and the WWF.
In software, the same class or code element may also present
different analogies to separate parts of the code. For exam-
ple, a data access object will present a read/write behavior to
the elements of code that need access to the data but will
present a “setDataSource” analogy to the elements of code
responsible for initialization. The choice of analogy by each
element of code is driven by the purpose that element wishes
to access the DAO. Presenting one analogy to the business
functionality whilst hiding other aspects of the DAO may
mean that cognitive load is reduced when understanding the
business logic.

In 1983 Gentner [10] proposed an algorithm for how the
structure of the analogy influences choice. Analogies with
similar operations are preferred to those that are simple simi-
larities in attributes.

Gentner categorizes analogies by the types of mapping
between the varieties. These can be mappings between at-
tributes or relations (a relation can exist between attributes
and/or other relations). The categories are reproduced here
(two of the names have been changed to avoid confusion
with software terminology):

No. Of
attributes
Mapped

No. Of
relations
mapped Example

Literal
Similarity Many Many

The K5 solar sys-
tem is like our
solar system

Vanilla
Analogy Few Many

The atom is like
our solar system

Rule Anal-
ogy 1 Few Many

The atom is a cen-
tral force system

Anomaly Few Few
Coffee is like the
solar system

1 Rule Analogy differs from vanilla analogy and the other
comparisons in having few object attributes in the varie-
ties.

For example, the instances of a class are literal similarities
(the class description itself serves as the mapping) as are the
rows of a database table (the column names serve as the
mapping). Interfaces and abstract classes can be used to de-
tail the mapping for vanilla analogies. The need for late bind-
ing and/or loose typing is usually associated with a rule
analogy (for example, the Set class does not know what type
of objects are to be placed in the set).

2.8 Analogy Patterns in Software

The psychologists view of analogies [10] (i.e. having attrib-
utes and operations) is similar to to the class/interface struc-
ture evolved by software designers. This is not by
coincidence if we accept the conjecture that design principles
guide us to produce textual representations of the memory
network. The existence of analogical structures within the
mind would inevitably lead to the evolution of languages and
principles that mimic them (although inevitability makes it a
no lesser feat by the software designers).

Borrowing heavily from the psychologists definition of
the analogy and the software designers interface/class,the
structure for the analogy can be represented as in Figure 2.
An analogy is the mapping of similar attributes, operations
and rules between two or more varieties. Each variety speci-
fies a value for attributes as well as an implementation for the
operations. The SaleItem vanilla analogy in Figure 3 serves
as a simple example (the Na, Aa, Nv, Av annotations are from
the analogy template in Figure 2). Of special note is that the

Figure 2. Analogy structure.

category attribute is an anology itself with varieties “Electri-
cals”, “Furnishings” etc. Attributes (Aa) reference another
analogy by either the type or the name chosen to represent
the attribute (in this case the name “category” is the name of
the analogy). The Value (Av) will reference a variety of that
analogy. For our purpose, we view the category analogy as
having no attributes or operations and so it is sufficient to
reference analogy and variety names only (“category”, “Elec-
tricals”, “Furnishings”). If our purpose changes (either by
better understanding or a change in requirement) then we
would create an analogy structure for category and reference
that in the SaleItem analogy.

The most obvious means to implement analogies in soft-
ware is to use interfaces and abstract classes but there are
other structures that can deliver the same. Please note, the
code samples in this section are meant as examples of struc-
tures. They show how the code could be written rather than
necessarily how they should.

A good guide for identifying analogies in software is if
you can “guess” the code that must be written when the be-
havior is to be extended for a new variety. For example the
following code presents the account type attribute for differ-
ent varieties of futures exchanges (Eurex, Liffe etc)

public String getAccountType(String account)

{

 if(exchange.equals(“EUREX”))

 return getEurexAccountType(account);

 if(exchange.equals(“LIFFE”))

 return getLiffeAccountType(account);

 if(exchange.equals(“MONEP”))

 return getMonepAccountType(account);

Extending this code for the Matif exchange is easy to
“guess”:

 if(exchange.equals(“MATIF”))

 return getMatifAccountType(account);

At first view this may seem like an implicit requirement of

software development experience. However, the experience
required here is one of recognizing analogies, a skill that is
developed in our childhood. This implicit assumption of the
reader being able to identify and build analogical structures
(that reflect business requirements) is arguably a core skill
requirement for even a novice software developer.

The next sections detail the various Java code structures
that can be used to represent analogies. Naturally, other lan-
guages share some of these structures and most have addi-
tional ways of coding analogies. I propose that these
structures are the templates in the mind that experience
builds up. For example, the “Substitute Algorithm” refactor
in Fowler’s “Refactoring” is replacing the “switch” analogy
with an “attribute only” analogy. These structures have

evolved using the laws of similarity and proximity to give
visual clues to the reader so that they can easily recognize the
elements of the analogy.

When coding a solution to a requirement the programmer
will use their natural cognitive abilities to identify the analo-
gies of the problem (this will include the simple literal simi-
larities as well as the more complex vanilla analogies and
rule analogies). Choosing which code structure to represent
the analogies will be dependent upon both the type of the
analogy and also the dependencies that the implementations
of the varieties require. At the same time the experienced
programmer will be aware that the code elements need to be
chunked into four elements or fewer.

As our understanding of the requirements change (or even
as the requirements themselves change) the choice of code
structure for the analogies may need to be revisited. The ex-
perienced programmer (with the analogy templates in their
mind) finds it easier to visualize alternative analogical struc-
tures and so is more likely to deliver a “well designed” refac-
tor in a timely manner.

In some cases we may change classes that have been iden-
tified as those that should be closed for modification. This
does not mean that our original design failed the open-closed
principle. Rather, the new requirements have changed the
shape of the analogies of the problem. The previous design
was the correct solution for the previous analogical structure,
but our new requirements have changed that structure into a
different problem. Recognizing the changes to underlying
analogies will give comfort to the inexperienced coder that a
redesign is the right choice.

2.8.1 Attribute only Analogies

The simplest implementation for attribute only analogies is a
map. In this example futures exchanges are seen as literal
similarities with the only attribute of interest being the coun-
try in which they operate.

static Map exchangeCountry = new HashMap();

static {

 exchangeCountry.put("EUREX","Germany");

 exchangeCountry.put("CBOT","US");

 exchangeCountry.put("LIFFE","England");

 //can guess what to do

//to extend for NYBOT......

}

//usage

public String logMessage

(String exchangeName)

{

 return "Exchange " + exchangeName +

" is in " +

exchangeCoun-

try.get(exchangeName);

}

• Analogy Name [Na] – exchange is the prefix of the vari-
able name exchangeCountry

• Attribute [Aa] – country is the suffix of the variable name
exchangeCountry

• Variety Name [Nv] – the map key (e.g. "EUREX")

• Value [Av] – the map value (e.g. "Germany")

2.8.2 Statement Shape Analogies

Here a statement shape is repeated for different fields or ele-
ments to provide the implementation for a behavior. The
similarity of the statement shape is key for the reader to be
able to recognize the analogy (which is to check for a null
value then check for a zero value). In this example validating
a field is the analogy and each field of the class needs it’s
own variety of validation.

private Date expirationDate;

private Long contractNumber;

private Double price;

private Double quantity;

private String description;

private boolean isValid()

{

 if (expirationDate == null ||

 !(expirationDate.getTime() > 0))

 return false;

 if (contractNumber == null ||

 !(contractNumber.longValue() > 0))

 return false;

 if (price == null ||

 !(price.doubleValue() > 0))

 return false;

 if (quantity == null ||

 !(quantity.doubleValue() > 0))

 return false;

 //can guess what the code line is

//for the String parameter

//"description"

 return true;

}

• Analogy Name [Na] – n/a.

• Operation [Oa] – the method name isValid gives the
single operation.

• Variety Name [Nv] – the similarity of the statement lines
(utilizing the law of similarity) will indicate that the vari-
ety is defined by the field name.

• Behaviour [Ov] – the statement structure for each field

2.8.3 Switch Analogy

Similar to the Statement Shape analogy, the implementations
are chunked together with a more formal specification of
variety type. The example here returns the value for combin-
ing two numbers with various operators (add, minus etc.)

private int operand;

public double calculate

(double first, double second)

{

 switch (operand)

 {

 case MULTIPLY:

 return first * second;

 case DIVIDE:

 return first / second;

 case ADD :

 return first + second;

 case SUBTRACT :

 return first - second;

 }

 return 0;

}

• Analogy Name [Na] – n/a.

• Operation [Oa] – the method name calculate.

• Variety Name [Nv] – the case values (e.g. MULTIPLY,
DIVIDE etc.).

• Behaviour [Ov] – the block of the associated case.

2.8.4 Method Name Analogy

Either the suffix or prefix of the method is used to express
the analogy. The prefix has the advantage of grouping to-
gether the methods when they are listed in alphabetical order
(as with many IDEs). The prefix version example is the visi-
tor pattern. The suffix example returns different value types
from the Double object. This structure is useful when all the
varieties share dependencies as these can be chunked within
the class.

//example 1 - prefix

public void visitExpression(Node a){};

public void visitBlock(Node a){};

public void visitFile(Node a){};

//example 2 - suffix

Double doubleObj = new Double(0);

double a = doubleObj.doubleValue();

int b = doubleObj.intValue();

long c = doubleObj.longValue();

float d = doubleObj.floatValue();

• Analogy Name [Na] – n/a.

• Operation [Oa] – method prefix or postfix (e.g. visit).

• Variety Name [Nv] – remainder of method name (e.g. Ex-
pression, Block etc.).

• Behaviour [Ov] – method block.

2.8.5 Method Parameter Analogy

The type of parameter passed to a method can distinguish the
variety. The example here gives the maximum of two num-
bers (using the static Math class).

 float f = Math.max(1.0F, 2.0F);

 int i = Math.max(1, 2);

 long l = Math.max(1L, 2L);

 double d = Math.max(1.0, 2.0);

• Analogy Name [Na] – n/a.

• Operation [Oa] – method name (max).

• Variety Name [Nv] – the type of the passed parameter.

• Behaviour [Ov] – method implementation.

2.8.6 Class/Interface Analogy

The class/interface analogy allows for multiple elements col-
lected (chunked) together.

abstract class Shape

{

 String name; //square, circle etc

 int numSides;

 abstract double area();

}

class Rectangle extends Shape

{

 double length;

 double width

 double area()

 {

 return (length * width);

 }

}

• Analogy Name [Na] – abstract class name (e.g. Shape)

• Attribute [Aa] – fields (e.g. name, numSides).

• Operation [Oa] – abstract method area.

• Variety Name [Nv] – extended class name Rectangle.

• Value [Av] – values of field.

• Behaviour [Ov] – implementation of abstract method
(area method in Rectangle)

2.8.7 Rule Analogy

Generics in Java can be used in the coding of Rule analogies.
This can be to identify the operations needed by the rule and
also as a way to formally define the type associations (e.g.
the object type returned by the Iterator must be the same type
as that placed in the Collection class).

2.8.8 Application Level Analogy

The running instances of an application are literal similarities
of one another. Configuration files and system properties
identify the attributes of the analogy. IOC mechanisms allow
us to define operations at the application level analogy.

2.9 Multi-Paradigm Design

The approach of identifying the business analogies in the
requirements and choosing the pertinent code structure was
identified by Coplien [4]. Coplien uses the term “domain” for
analogies and “sub-domains” for their varieties. “Solution
domains” are analogy structures in code (although only for-
mal structures such as interface, templates, etc. are identi-
fied). The “commonality and variability analysis” is the
process of identifying the analogies.

Both Coplien and Booch [1] explain object-oriented de-
sign as decomposition attributed to chunking. Structured
design is the discipline of chunking but it is my contention
that object-oriented design is the discipline of identifying and
coding analogies. These are different but complimentary
skills that must be employed to produce well designed soft-
ware.

3. Fundamental Metric of Software
Design

“… more what you’d call ‘guidelines’ than actual rules”
– Capt. Barbossa, Pirates of the Caribbean: The Curse of

the Black Pearl

3.1 “4 minus Analogies” Rule

Analogies are the building blocks of cognition. Identifying
the analogies of the problem is the first step to the solution.
Code structures to represent analogies are part of the experi-
ence of the programmer.

Our mind has evolved to manufacture long-term memory
networks that are optimized for searching and re-learning
costs (as we extend it). The consequence of this is that we are
limited to processing four elements or fewer at any time
(code elements include statement expression, statement
groups, associations, methods, classes, packages etc.). The
only exception to this is the number of varieties of an anal-
ogy. We can understand a shopping list regardless of its
length because we understand that all items need to be
treated the same (i.e. find and buy). We will naturally group
all the varieties as one element under an analogy description.

Therefore, the core fundamental metric of software design
is that software should be chunked in elements of four (or
fewer) after allowing for any number of varieties of analo-
gies. The psychologist’s definition of a chunk is assumed
here so cohesion and coupling considerations are implicit in
this rule. This does not mean that a class, say, should only
have four methods. Rather, the methods need to be chunked
together in groups of four or fewer (again after allowing for
any number of varieties of analogies).

Chunking software elements is fairly obvious and is men-
tioned in many texts. Explaining the permissible exceptions
using a simple consistent rule is not. The classic exception is
that of a single, simple behavior based on different types,
which does not warrant a class structure all to itself. Rather, a
simple switch/case statement is more appropriate. As seen in
previous sections this is a structure for an analogy and so
follows the rule of “4 minus analogies”.

Including more than four elements may place a burden on
the reader to employ their own chunking strategies on the
code. Without the guidelines that the author can give using
the structures above, the reader may produce different parti-
tions and/or have difficulty doing so, leading to confusion of
the code (and the greater probability of introducing bugs).

Chunking analogies may shed some light on the artistry
behind programming but not all. For example Bloch’s
builder structure owes more to making code look like written
language despite the tight restrictions of what has to be a
very limited code vocabulary.

4. Example “Companion” Sections
The brief explanations below serve two purposes. Firstly,
they provide evidence that the core principles above, which
have been extracted from the cognitive model, are consistent
with design principles that are widely subscribed to. Sec-
ondly, they show how novices can be provided with the de-
tails behind when the rules below are appropriate to be
applied. For example, the rule of “4 minus analogies” serves

as a test for when a method or individual statement is too
large or when a class has too many methods etc.

4.1 Design Patterns

The GoF design patterns [13] show how analogies can be
delivered using class level structures. Single analogies are
discussed in some patterns. Multiple analogies are also dis-
cussed, in some cases where one of the analogies is not under
direct control (e.g. Adapter).

4.1.1 Abstract Factory

In most cases the elements (typically attributes and behav-
iors) of an analogy will be chunked together due to the natu-
ral strong associations. When there are multiple analogies
influencing a behavior, the layering of the analogies will
largely be decided by considerations of the dependencies. In
the abstract factory pattern each concretion of the Widget-
Factory interface creates the varieties of widgets for a single
OS. Here, the behaviors of the widgets are subject to two
analogies, one that has the widget type as variety, the other
has the OS (that the widget is displayed upon) as the variety.
An alternative structure may be that the concretions create a
single widget for a variety of OS’s [in both cases there are
(No. Widgets) x (No. OS) classes]. The intent of the pattern
is stated as:

“Provide an interface for creating families of related or
dependent objects without specifying their concrete classes”.

Here the stronger dependencies are stated to be those
within the “family” and so the preferred structure groups the
variety of widgets for a single OS.

Sometimes, we may need to write the code where the
analogies overlap to fully identify the dependencies and so
decide which analogy has the stronger associations. If we
have prior experience then it may be possible to perform this
in the mind and so visualize a design before we put fingers to
keyboard. In some cases however, even the most experienced
programmer will need to get into writing code before the
design structure is finalized (especially if unfamiliar third
party code is being used).

4.1.2 State

The state pattern reminds us that the choice of variety within
an analogy may be a dynamic one. It also highlights that if
the associations amongst the behavior (methods) of each
variety are stronger than the associations amongst the varie-
ties (i.e. common code) then it makes sense to chunk the
varieties in their own separate classes.

4.1.3 Visitor

The method name analogy as discussed in section 2.8.4.

4.2 Fowler Refactoring

There are a number of common concepts within Martin
Fowler’s Refactoring book that can be explained with refer-
ence to the cognitive model:

a) Chunking. Code elements should be chunked in ele-
ments of 4 or fewer (allowing for analogies).

b) Accurate Names. Names of variables, methods etc serve
as images on the LTM network. The more accurate
these names are in describing what they represent the
more likely that the reader’s mind will use the name as
an image and so the closer the code structure is to the
structure in LTM. As a contrary example, using the
same variable name to represent the value throughout
the different stages of calculation must mean that it is ei-
ther inaccurate for at least one of its cases or so vague as
to diminish its suitability as an image name.

c) Introduce Name. If it is difficult to determine the pur-
pose of the code chunk from the elements within, attach-
ing a name (literal description or metonymy) will serve
as an image on the LTM network. In this way the author
can efficiently pass knowledge on to the reader.

d) Remove unnecessary layers of indirection. Indirections
that serve no purpose have an associated cost (see sec-
tion 2.6 “Code for Experts and Novices”).

Example rule explanations are as follows
• Extract Method - The use of methods to chunk code in-

cluding introducing a name.

• Inline Method - If the method body is just as clear as the
name then not only is this redundant information but it is
also an unnecessary indirection.

• Inline Temp - Unnecessary indirection

• Replace Temp With Query - Reduces the number of ele-
ments in the main method to ease cognitive load and also
aids chunking.

• Introduce Explaining Variable - Chunking and introduces
image. A long statement (i.e. one that has greater than
four elements) is split into a number of statements that
have four or fewer elements, each with their own image
(variable name).

• Split Temporary Variable - Accurate Names

• Remove Assignments To Parameters - Accurate Names

• Replace Method With Method Object - Use of a class
structure to allow a long method (greater than four ele-
ments) to be chunked.

• Substitute Algorithm - Swaps one analogy structure for
another.

5. Conclusion
This paper has
• Detailed the strong mapping between the cognitive model

and design principles.

• Identified that recognising and coding analogies is one of
the two primary disciplines in good software design (the
other being chunking).

• Used these results to discover the “4 minus analogies”
rule.
Making code easier to understand is the primary driver

behind the majority of software design principles. To define
simplicity, however, we must examine the processes and
limits within the mind. The cognitive model can be under-
stood and learned by the novice using their life experiences
as examples and does not require any programming or design
knowledge. The concepts of cognition are the fundamentals
behind design principles. This does not obviate the necessity
for learning and understanding design principles but it does
help to lower the bar of experience needed for the novice to
build up the ability to differentiate when it is appropriate to
apply them. The subsequent improvement in the design of
our code will reduce the time and costs associated with sup-
port and mainentance.

The primary proposal is that novice programmers follow a
training program to:
1. Become familiar with the cognitive model, including:

a) Chunking and the capacity limits of short-term memory.

b) Analogies as the building blocks of cognition.

c) Long term memory structures.

d) Cognitive loading (e.g. split attention effect and redun-
dant information).

e) Expert versus novice behavior.

2. Identify and write Analogy & Chunking structures in
code

3. Understand how texts like Fowler’s Refactoring & the
GoF Design Patterns provide common solutions to
chunking and high level structures of analogies.

4. The importance of learning IDE features which deliver an
experts view on code that has been structured primarily
for the novice.

6. Signoff
In this paper the analogy is made between the structure of
memory within the brain and the structure of code that fol-
lows design principles (which have evolved over the last few
decades). In this case the base of the analogy is the cognitive
model provided by psychologists which when mapped onto
the target of design principles, enriches our understanding to
lower the bar of experience needed to apply them. At the
heart of this mapping are analogies themselves. What if we
were to evaluate the analogy in the opposite way? Could the
design principles that have surfaced from the melting pot of
millions of programmers working on billions of lines of code
be used to infer knowledge about cognition?

An analogy that helps us to understand analogies.

Acknowledgments
To Bernie Mullen, Ged Mullen and Pete Williams for the
helpful comments and suggestions. Thanks also to Giles
Thompson, Miranda Sinclair, John Weir and Don Raab for
their support and guidance.

References
[1] G. Booch; R. A. Maksimchuk; M. W. Engle; B. J. Young; J.

Conallen; K. A. Houston. Object-Oriented Analysis and De-
sign with Applications, Third Edition (2007). Addison-Wesley
ISBN 0-201-89551-X

[2] F. Brooks. No Silver Bullet - Essence and Accidents of Soft-
ware Engineering (1986). http://www.lips.utexas.edu/ee382c-
15005/Readings/Readings1/05-Broo87.pdf.

[3] G. Cooper. Research into Cognitive Load Theory and Instruc-
tional Design at UNSW (1998).
http://education.arts.unsw.edu.au/staff/sweller/clt/index.html

[4] J. O. Coplien. Multi-Paradigm Design for C++ (2003). Addi-
son-Wesley ISBN 0-201-82467-1.

[5] N. Cowan. The Magical Number 4 in Short-term Memory: A
Reconsideration of Mental Storage Capacity. In Behavioral
and Brain Sciences, Vol. 24, No. 1. (February 2001), pp. 87-
185. (2001)

[6] O. Dahl, E. Dijkstra, C. A. R Hoare. Structured Programming
(1972). Academic Press.

[7] A. Didierjean, and F. Gobet. Sherlock Holmes – An expert’s
view of expertise. In British Journal of Psychology 99: 109–
125 (2087).

[8] D. K. Dirlam. Most efficient chunk sizes. In Cognitive Psy-
chology, 3:355–359, 1972.

[9] M. Fowler, K. Beck, J. Brant, and W. Opdyke. Refactoring:
Improving the Design of Existing Code (1999). Addison-
Wesley ISBN 0-201-48567-2.

[10] D. Gentner. Structure-mapping: A theoretical framework for
analogy. In Cognitive Science, 7, pp 155-170 (1983).

[11] F. Gobet. Discrimination Nets, Production Systems and Se-
mantic Networks: Elements of a Unified Framework (1996).
http://people.brunel.ac.uk/~hsstffg/papers/UnifiedFramework/
UnifiedFramework.html.

[12] F. Gobet, P. C. R. Lane, S. Croker, P. C-H. Cheng, G. Jones, I.
Oliver, and J. M. Pine. Chunking mechanisms in human learn-
ing. In TRENDS in Cognitive Sciences, 5, 236-243. (2001).

[13] Gamma, Helm, Johnson and Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. (1995). Addison-
Wesley ISBN 0-201-63361-2

[14] Douglas R. Hofstadter. Analogy as the Core of Cognition. In
Dedre Gentner, Keith Holyoak, and Boicho Kokinov (eds.) The
Analogical Mind: Perspectives from Cognitive Science, Cam-
bridge, MA: The MIT Press/Bradford Book, 2001, pp. 499–
538.

[15] K. J. Holyoak and P. Thagard. The Analogical Mind (1997).
http://cogsci.uwaterloo.ca/Articles/Pages/Analog.Mind.html

[16] J. N. MacGregor. Short-term memory capacity: Limitation or
optimization? In Psychological Review, 94(1):107–108, 1987.

[17] George A Miller. The Magical Number Seven, Plus or Minus
Two: Some Limits on Our Capacity for Processing Informa-
tion. In The Psychological Review, 1956, vol. 63, pp. 81-97
(1956)

[18] H. Mills, R. Linger, A. Hevner. Principles of Information Sys-
tem Design and Analysis (1986). Academic Press.

[19] G. Myers. Composite/Structured Design (1978). Van Nostrand
Reinhold.

[20] M. Page-Jones. The Practical Guide to Structured Systems
Design (1988). Yourdon Press.

[21] T. Stafford, M. Webb. Mind Hacks (2004). O'Reilly ISBN 0-
596-00779-5

[22] P. Van den Broek, K. Risden, Y. Tzeng, T. Trabasso, and P.
Brasche. Inferential questioning: Effects of comprehension of
narrative texts as function of grade and timing. In Journal of
Educational Psychology, 93(3): 521-529 (2001).

[23] N. Wirth. Program Development by Stepwise Refinement
(1983). In Communications of the ACM vol. 26(1).

[24] N. Wirth. Algorithms and Data Structures (1986). Prentice-
Hall.

[25] E. Yourdon, L. Constantine. Structured Design (1979). Pren-
tice-Hall.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

